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Preface

This book is intended to provide first-year engineering students with a comprehen-
sive introduction to the application of mathematics in engineering. This includes
math topics ranging from precalculus and trigonometry through calculus and dif-
ferential equations, with all topics set in the context of an engineering application.
Specific math topics include linear and quadratic equations, trigonometry, 2-D vec-
tors, complex numbers, sinusoids and harmonic signals, systems of equations and
matrices, derivatives, integrals, and differential equations. However, these topics are
covered only to the extent that they are actually used in core first- and second-year
engineering courses, including physics, statics, dynamics, strength of materials and
electric circuits, with occasional applications from upper-division courses. Additional
motivation is provided by a wide range of worked examples and homework problems
representing a variety of popular engineering disciplines.

In addition to a variety of corrections and improvements throughout the text,
the Second Edition includes 240 new or revised homework problems, including all
odd-numbered problems in Chapters 1–10. It also includes a brand new Chapter 11
Probability and Statistics in Engineering, which is intended to help motivate the
ever-increasing importance and application of statistics across all fields of engineer-
ing, with a particular emphasis on manufacturing.

While this book provides a comprehensive introduction to both the math topics
and their engineering applications, it provides comprehensive coverage of neither.
As such, it is not intended to be a replacement for any traditional math or engineer-
ing textbook. It is more like an advertisement or movie trailer. Indeed, everything
covered in this book will be covered again in either an engineering or mathematics
classroom. This gives the instructor an enormous amount of freedom—the freedom
to integrate math and physics by immersion. The freedom to leverage student intu-
ition, and to introduce new physical contexts for math without the constraint of
prerequisite knowledge. The freedom to let the physics help explain the math and
the math help explain the physics. The freedom to teach math to engineers the way
it really ought to be taught—within a context, and for a reason.

Ideally, this book would serve as the primary text for a first-year engineering
mathematics course, which would replace traditional math prerequisite requirements
for core sophomore-level engineering courses. This would allow students to advance
through the first two years of their chosen degree programs without first complet-
ing the required calculus sequence. Such is the approach adopted by Wright State
University and a growing number of institutions across the country, which are now
enjoying significant increases not only in engineering student retention but also in
engineering student performance in their subsequent math and engineering courses.

vi
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Preface vii

Alternatively, this book would make an ideal reference text for any first-year
engineering program. Its organization is highly compartmentalized, which allows
instructors to pick and choose which math topics and engineering applications to
cover. Thus, any institution wishing to increase engineering student preparation and
motivation for the required calculus sequence could easily integrate selected top-
ics into an existing first-year engineering course, without having to find room in the
curriculum for additional credit hours.

Finally, this book would provide an outstanding resource for nontraditional stu-
dents returning to school from the workplace, for students who are undecided or
are considering a switch to engineering from another major, for math and science
teachers or education majors seeking physical contexts for their students, or for
upper-level high school students who are thinking about studying engineering in col-
lege. For all of these students, this book represents a one-stop shop for how math is
really used in engineering.
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Straight Lines in
Engineering

CHAPTER
1

In this chapter, the applications of straight lines in engineering are introduced. It
is assumed that the students are already familiar with this topic from their high
school algebra course. This chapter will show, with examples, why this topic is so
important for engineers. For example, the velocity of a vehicle while braking, the
voltage–current relationship in a resistive circuit, and the relationship between force
and displacement in a preloaded spring can all be represented by straight lines. In this
chapter, the equations of these lines will be obtained using both the slope-intercept
and the point-slope forms.

1.1 VEHICLE DURING BRAKING

The velocity of a vehicle during braking is measured at two distinct points in time, as
indicated in Fig. 1.1.

t (s) v(t) (m/s)
1.5 9.75
2.5 5.85

Figure 1.1 A vehicle while braking.

The velocity satisfies the equation

v(t) = at + vo (1.1)

where vo is the initial velocity in m/s and a is the acceleration in m/s2.

(a) Find the equation of the line v(t) and determine both the initial velocity vo and
the acceleration a.

(b) Sketch the graph of the line v(t) and clearly label the initial velocity, the acceler-
ation, and the total stopping time on the graph.

The equation of the velocity given by equation (1.1) is in the slope-intercept form
y = mx + b, where y = v(t), m = a, x = t, and b = vo. The slope m is given by

m =
Δ y
Δ x

=
y2 − y1

x2 − x1
.

1
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2 Chapter 1 Straight Lines in Engineering

Therefore, the slope m = a can be calculated using the data in Fig. 1.1 as

a =
v2 − v1

t2 − t1
= 5.85 − 9.75

2.5 − 1.5
= −3.9 m/s2

.

The velocity of the vehicle can now be written in the slope-intercept form as

v(t) = −3.9 t + vo.

The y-intercept b = vo can be determined using either one of the data points. Using
the data point (t, v) = (1.5, 9.75) gives

9.75 = −3.9 (1.5) + vo.

Solving for vo gives
vo = 15.6 m/s.

The y-intercept b = vo can also be determined using the other data point (t, v) =
(2.5, 5.85), yielding

5.85 = −3.9 (2.5) + vo.

Solving for vo gives
vo = 15.6 m/s.

The velocity of the vehicle can now be written as

v(t) = −3.9 t + 15.6 m/s.

The total stopping time (time required to reach v(t) = 0) can be found by equating
v(t) = 0, which gives

0 = −3.9 t + 15.6.

Solving for t, the stopping time is found to be t = 4.0 s.

Figure 1.2 shows the velocity of the vehicle after braking. Note that the stopping time
t = 4.0 s and the initial velocity vo = 15.6 m/s are the x- and y-intercepts of the line,
respectively. Also, note that the slope of the line m = −3.90 m/s2 is the acceleration
of the vehicle during braking.

0

15.6

4.0

Stopping time
(x-intercept)

1

0

Velocity, m/s

a 3.90 m/s2

Initial velocity, v0

(y-intercept)

t, s

Figure 1.2 Velocity of the vehicle after braking.
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1.2 Voltage–Current Relationship in a Resistive Circuit 3

1.2 VOLTAGE–CURRENT RELATIONSHIP IN A RESISTIVE
CIRCUIT

For the resistive circuit shown in Fig. 1.3, the relationship between the applied voltage
Vs and the current I flowing through the circuit can be obtained using Kirchhoff’s
voltage law (KVL) and Ohm’s law. For a closed-loop in an electric circuit, KVL states
that the sum of the voltage rises is equal to the sum of the voltage drops:

Kirchhoff’s voltage law: ⇒
∑

Voltage rise =
∑

Voltage drop.

VS

R VR

V

I

Vs (V) I (A)
10.0 0.1
20.0 1.1

Figure 1.3 Voltage and current in a resistive circuit.

Applying KVL to the circuit of Fig. 1.3 gives

Vs = VR + V. (1.2)

Ohm’s law states that the voltage drop across a resistor VR in volts (V) is equal to the
current I in amperes (A) flowing through the resistor multiplied by the resistance R
in ohms (Ω):

VR = I R. (1.3)

Substituting equation (1.3) into equation (1.2) gives a linear relationship between the
applied voltage Vs and the current I as

Vs = I R + V. (1.4)

The objective is to find the value of R and V when the current flowing through the
circuit is known for two different voltage values given in Fig. 1.3.

The voltage–current relationship given by equation (1.4) is the equation of a straight
line in the slope-intercept form y = mx + b, where y = Vs, x = I, m = R, and b = V.
The slope m is given by

m = R =
Δ y
Δ x

=
ΔVs

Δ I
.

Using the data in Fig. 1.3, the slope R can be found as

R = 20 − 10
1.1 − 0.1

= 10 Ω.

Therefore, the source voltage can be written in the slope-intercept form as

Vs = 10 I + b.
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4 Chapter 1 Straight Lines in Engineering

The y-intercept b = V can be determined using either one of the data points. Using
the data point (I, Vs) = (0.1, 10) gives

10 = 10 (0.1) + V.
Solving for V gives

V = 9 V.

The y-intercept V can also be found by finding the equation of the straight line using
the point-slope form of the straight line (y − y1) = m(x − x1) as

Vs − 10 = 10(I − 0.1) ⇒ Vs = 10 I − 1.0 + 10.

Therefore, the voltage–current relationship is given by

Vs = 10 I + 9. (1.5)

Comparing equations (1.4) and (1.5), the values of R and V are given by

R = 10 Ω, V = 9 V.

Figure 1.4 shows the graph of the source voltage Vs versus the current I. Note that
the slope of the line m = 10 is the resistance R in Ω and the y-intercept b = 9 is the
voltage V in volts.

0

10

20

0

1

1.10.1

10  R

V  9 V

VS, V

I, A

Figure 1.4 Voltage–current relationship for the data given in Fig. 1.3.

The values of R and V can also be determined by switching the interpretation of x and
y (the independent and dependent variables). From the voltage–current relationship
Vs = I R + V, the current I can be written as a function of Vs as

I = 1
R

Vs −
V
R
. (1.6)

This is an equation of a straight line y = m x + b, where x is the applied voltage Vs,
y is the current I, m = 1

R
is the slope, and b = −V

R
is the y-intercept. The slope and
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1.2 Voltage–Current Relationship in a Resistive Circuit 5

y-intercept can be found from the data given in Fig. 1.3 using the slope-intercept
method as

m =
Δ y
Δ x

= Δ I
ΔVs

.

Using the data in Fig. 1.3, the slope m can be found as

m = 1.1 − 0.1
20 − 10

= 0.1.

Therefore, the current I can be written in the slope-intercept form as

I = 0.1 Vs + b.

The y-intercept b can be determined using either one of the data points. Using the
data point (Vs, I) = (10, 0.1) gives

0.1 = 0.1 (10) + b.

Solving for b gives

b = −0.9.

Therefore, the equation of the straight line can be written in the slope-intercept
form as

I = 0.1 Vs − 0.9. (1.7)

Comparing equations (1.6) and (1.7) gives

1
R

= 0.1 ⇒ R = 10 Ω

and
−V

R
= −0.9 ⇒ V = 0.9 (10) = 9 V.

Figure 1.5 is the graph of the straight line I = 0.1Vs − 0.9. Note that the y-intercept

is − V
R

= − 0.9 A and the slope is 1
R

= 0.1.

y-intercept

1

0.1

0 10 20

0.9

1.1

0.1
0

I, A

VS ,V

Figure 1.5 Straight line with I as independent variable for the data given in Fig. 1.3.
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6 Chapter 1 Straight Lines in Engineering

1.3 FORCE–DISPLACEMENT IN A PRELOADED TENSION
SPRING

The force–displacement relationship for a spring with a preload fo is given by

f = k y + fo, (1.8)

where f is the force in Newtons (N), y is the displacement in meters (m), and k is the
spring constant in N/m.

y

f
k

f (N) y(m)
1 0.1
5 0.9

Figure 1.6 Force–displacement in a preloaded spring.

The objective is to find the spring constant k and the preload fo, if the values of the
force and displacement are as given in Fig. 1.6.

Method 1: Treating the displacement y as an independent variable, the force–
displacement relationship f = k y + fo is the equation of a straight line y = mx + b,
where the independent variable x is the displacement y, the dependent variable y is
the force f , the slope m is the spring constant k, and the y-intercept is the preload
fo. The slope m can be calculated using the data given in Fig. 1.6 as

m = 5 − 1
0.9 − 0.1

= 4
0.8

= 5.

The equation of the force–displacement equation in the slope-intercept form can
therefore be written as

f = 5 y + b.

The y-intercept b can be found using one of the data points. Using the data point
(y, f ) = (0.9, 5) gives

5 = 5 (0.9) + b.

Solving for b gives

b = 0.5 N.

Therefore, the equation of the straight line can be written in the slope-intercept
form as

f = 5 y + 0.5. (1.9)

Comparing equations (1.8) and (1.9) gives

k = 5 N/m, fo = 0.5 N.

Method 2: Now treating the force f as an independent variable, the force–

displacement relationship f = k y + fo can be written as y = 1
k

f −
fo

k
. This relation-

ship is the equation of a straight line y = mx + b, where the independent variable
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1.4 Further Examples of Lines in Engineering 7

x is the force f , the dependent variable y is the displacement y, the slope m is the

reciprocal of the spring constant 1
k

, and the y-intercept is the negative preload

divided by the spring constant −
fo

k
. The slope m can be calculated using the data

given in Fig. 1.6 as

m = 0.9 − 0.1
5 − 1

= 0.8
4

= 0.2.

The equation of the displacement y as a function of force f can therefore be written
in the slope-intercept form as

y = 0.2 f + b.

The y-intercept b can be found using one of the data points. Using the data point
(f , y) = (5, 0.9) gives

0.9 = 0.2 (5) + b.

Solving for b gives

b = −0.1.

Therefore, the equation of the straight line can be written in the slope-intercept
form as

y = 0.2 f − 0.1. (1.10)

Comparing equation (1.10) with the expression y = 1
k

f −
fo

k
gives

1
k
= 0.2 ⇒ k = 5 N/m

and

−
fo

k
= −0.1 ⇒ fo = 0.1 (5) = 0.5 N.

Therefore, the force–displacement relationship for a preloaded spring given in
Fig. 1.6 is given by

f = 5 y + 0.5.

1.4 FURTHER EXAMPLES OF LINES IN ENGINEERING

Example
1-1

The velocity of a vehicle follows the trajectory shown in Fig. 1.7. The vehicle starts
at rest (zero velocity) and reaches a maximum velocity of 10 m/s in 2 s. It then
cruises at a constant velocity of 10 m/s for 2 s before coming to rest at 6 s. Write
the equation of the function v(t) for times between 0 and 2 s, between 2 and 4 s,
between 4 and 6 s, and greater than 6 s.
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8 Chapter 1 Straight Lines in Engineering

10

0 2 4 6

v(t), m/s

t, s

Figure 1.7 Velocity profile of a vehicle.

Solution The velocity profile of the vehicle shown in Fig. 1.7 is a piecewise linear function
with three different equations. The first linear function is a straight line passing
through the origin starting at time 0 s and ending at time equal to 2 s. The second
linear function is a straight line with zero slope (cruise velocity of 10 m/s) starting
at 2 s and ending at 4 s. Finally, the third piece of the trajectory is a straight line
starting at 4 s and ending at 6 s. The equation of the piecewise linear function can
be written as

(a) 0 ≤ t ≤ 2 s:

v(t) = mt + b

where b = 0 and m = 10 − 0
2 − 0

= 5. Therefore,

v(t) = 5 t m/s.

(b) 2 ≤ t ≤ 4 s:

v = 10 m/s.

(c) 4 ≤ t ≤ 6 s:

v(t) = m t + b,

where m = 0 − 10
6 − 4

= −5 and the value of b can be calculated using the data

point (t, v(t)) = (6, 0) as

0 = −5 (6) + b ⇒ b = 0 + 30 = 30.

The value of b can also be calculated using the point-slope formula for the
straight line

v − v1 = m(t − t1),

where v1 = 0 and t1 = 6. Thus,

v − 0 = −5(t − 6).

Therefore,

v(t) = −5(t − 6).
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1.4 Further Examples of Lines in Engineering 9

or
v(t) = −5t + 30 m/s.

(d) t > 6 s:
v(t) = 0 m/s.

Example
1-2

The velocity of a vehicle is given in Fig. 1.8.

(a) Determine the equation of v(t) for
(i) 0 ≤ t ≤ 3 s

(ii) 3 ≤ t ≤ 6 s
(iii) 6 ≤ t ≤ 9 s
(iv) t ≥ 9 s

(b) Knowing that the acceleration of the vehicle is the slope of velocity, plot the
acceleration of the vehicle.

0 3 6 9

24

12

v(t), m/s

t, s

Figure 1.8 Velocity profile of a vehicle.

Solution (a) The velocity of the vehicle for different intervals can be calculated as
(i) 0 ≤ t ≤ 3 s:

v(t) = m t + b,

where m = 12 − 24
3 − 0

= −4 m/s2 and b = 24 m/s. Therefore,

v(t) = −4 t + 24 m/s.
(ii) 3 ≤ t ≤ 6 s:

v(t) = 12 m/s.
(iii) 6 ≤ t ≤ 9 s:

v(t) = m t + b,

where m = 0 − 12
9 − 6

= −4 m/s2 and b can be calculated in the slope-intercept

form using point (t, v(t)) = (9, 0) as
0 = −4(9) + b.
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10 Chapter 1 Straight Lines in Engineering

Therefore, b = 36 m/s and

v(t) = −4t + 36 m/s.
(iv) t > 9 s:

v(t) = 0 m/s.

(b) Since the acceleration of the vehicle is the slope of the velocity in each
interval, the acceleration a in m/s2 is given by

a =

⎧⎪⎪⎨⎪⎪⎩

−4; 0 ≤ t ≤ 3 s
0; 3 ≤ t ≤ 6 s

−4; 6 ≤ t ≤ 9 s
0; t > 9 s

The plot of the acceleration is shown in Fig. 1.9.

4

0 3 6 9

Acceleration, m/s2

t, s

Figure 1.9 Acceleration profile of the vehicle in Fig. 1.8.

Example
1-3

In a bolted connection shown in Fig.1.10, the force in the bolt Fb is related to the
external load P as

Fb = C P + Fi,

where C is the joint constant and Fi is the preload in the bolt.

(a) Determine the joint constant C and the preload Fi given the data in Fig. 1.10.

(b) Plot the bolt force Fb as a function of the external load P, and label C and Fi
on the graph.
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P

P (lb) Fb (lb)
400 500
800 600

Figure 1.10 External force applied to a bolted connection.

Solution (a) The force–load relationship Fb = CP + Fi is the equation of a straight line, y =
mx + b. The slope m is the joint constant C, which can be calculated as

C =
ΔFb

ΔP
= 600 − 500

800 − 400
= 100

400
lb
lb

= 0.25.

Therefore,
Fb = 0.25 P + Fi. (1.11)

Now, the y-intercept Fi can be calculated by substituting one of the data points
into equation (1.11). Substituting the second data point (P, Fb) = (800, 600)
gives

600 = 0.25 × 800 + Fi.

Solving for Fi yields

Fi = 600 − 200 = 400 lb.

Therefore, Fb = 0.25 P + 400 is the equation of the straight line, where
C = 0.25 and Fi = 400 lb. Note that the joint constant C is dimensionless.

(b) The plot of the force Fb in the bolt as a function of the external load P is shown
in Fig. 1.11.

600

0 400 800

500 1
C

Fb, lb

Fi 400

(400, 500)

(800, 600)

P, lb

Figure 1.11 Plot of the bolt force Fb as a function of the external load P.
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12 Chapter 1 Straight Lines in Engineering

Example
1-4

For the electric circuit shown in Fig. 1.12, the relationship between the voltage V
and the applied current I is given by V = (I + Io)R. Find the values of R and Io if
the voltage across the resistor V is known for the two different values of the current
I as shown in Fig. 1.12.

RI Io V

I (A) V (V)
0.1 1.2
0.2 2.2

Figure 1.12 Circuit for Example 1-4.

Solution The voltage–current relationship V = R I + R Io is the equation of a straight
line y = mx + b, where the slope m = R can be found from the data given in
Fig. 1.12 as

R = ΔV
ΔI

= 2.2 − 1.2
0.2 − 0.1

= 1
0.1

V
A

= 10 Ω.

Therefore,
V = 10 I + 10 Io. (1.12)

The y-intercept b = 10 Io can be found by substituting the second data point (0.2,
2.2) in equation (1.12) as

2.2 = 100 × 0.2 + 10 Io.

Solving for Io gives

10 Io = 2.2 − 2 = 0.2,

which gives

Io = 0.02 A.

Therefore, V = 10 I + 0.2, R = 10 Ω and Io = 0.02 A.

Example
1-5

The output voltage vo of the operational amplifier (OP-AMP) circuit shown in Fig.

1.13 satisfies the relationship vo =
(
−100

R

)
vin +

(
1 + 100

R

)
vb, where R in kΩ is

the unknown resistance and vb is the unknown voltage. Fig. 1.13 gives the values
of the output voltage for two different values of the input voltage.

(a) Determine the value of R and vb.

(b) Plot the output voltage vo as a function of the input voltage vin. On the plot,
clearly indicate the value of the output voltage when the input voltage is zero
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(y-intercept) and the value of the input voltage when the output voltage is zero
(x-intercept).

R kΩ

100 kΩ

vin
vb

voOP-AMP

vin, V vo, V
5 5

10 − 5

Figure 1.13 An OP-AMP circuit as a summing amplifier.

Solution (a) The input–output relationship vo =
(
−100

R

)
vin +

(
1 + 100

R

)
vb is the

equation of a straight line, y = mx + b, where the slope m = −100
R

can be
found from the data given in Fig. 1.13 as

−100
R

=
Δvo

Δvin
= −5 − 5

10 − 5
= −10

5
= −2.

Solving for R gives R = 50 Ω. Therefore,

vo =
(
−100

50

)
vin +

(
1 + 100

50

)
vb

= −2 vin + 3 vb. (1.13)

The y-intercept b = 3 vb can be found by substituting the first data point
(vin, vo) = (5, 5) in equation (1.13) as

5 = −2 × 5 + 3 vb.

Solving for vb yields

3 vb = 5 + 10 = 15,

which gives vb = 5 V. Therefore, vo = −2 vin + 15, R = 50 Ω, and vb = 5 V. The
x-intercept can be found by substituting vo = 0 in the equation vo = −2 vin + 15
and finding the value of vin as

0 = −2 vin + 15,

which gives vin = 7.5 V. Therefore, the x-intercept occurs at vin = 7.5 V.

(b) The plot of the output voltage of the OP-AMP as a function of the input volt-
age if vb = 5 V is shown in Fig. 1.14.
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0 5 10

5

5

15

m 2 
R

100

vo, V

y-intercept v0  15 V

x-intercept  7.5 V

vin, V

Figure 1.14 An OP-AMP circuit as a summing amplifier.

Example
1-6

An actuator used in a prosthetic arm (Fig. 1.15) can produce a different amount of
force by changing the voltage of the power supply. The force and voltage satisfy the
linear relation F = kV, where V is the voltage applied and F is the force produced
by the prosthetic arm. The maximum force the arm can produce is F = 44.5 N when
supplied with V = 12 V.

(a) Find the force produced by the actuator when supplied with V = 7.3 V.

(b) What voltage is needed to achieve a force of F = 6.0 N?

(c) Using the results of parts (a) and (b), sketch the graph of F as a function of
voltage V. Use the appropriate scales and clearly label the slope and the results
of parts (a) and (b) on your graph.

Figure 1.15 Prosthetic arm.

Solution (a) The input–output relationship F = k V is the equation of a straight line y =
m x, where the slope m = k can be found from the given data as

k = 44.5
12

= 3.71 N/V.

Therefore, the equation of the straight line representing the actuator force F
as a function of applied voltage V is given by

F = 3.71 V. (1.14)

Thus, the force produced by the actuator when supplied with 7.3 V is found by
substituting V = 7.3 in equation (1.14) as

F = 3.71 × 7.3

= 27.08 N.
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(b) The voltage needed to achieve a force of 6.0 N can be found by substituting
F = 6.0 N in equation (1.14) as

6.0 = 3.71 V

V = 6.0
3.71

= 1.62 V. (1.15)

(c) The plot of force F as a function of voltage V can now be drawn as shown in
Fig. 1.16.

44.5

6.0

1.62 7.3 120

27.1

F, N

V, volts

m  k 3.71

Figure 1.16 Plot of the actuator force versus the applied voltage.

Example
1-7

The electrical activity of muscles can be monitored with an electromyogram
(EMG). The following root mean square (RMS) value of the amplitude measure-
ments of the EMG signal were taken when a woman was using her hand grip
muscles to ensure a lid was tight on a jar.

EMG

A (V) F (N)
0.0005 110

0.00125 275

Figure 1.17 Amplitude measurements of the EMG signal.

The RMS amplitude of the EMG signal satisfies the linear equation

A = mF + b, (1.16)
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where A is the RMS value of the EMG amplitude in V, F is the applied muscle
force in N, and m is the slope.

(a) Determine the values of m and b.

(b) Plot the RMS amplitude A as a function of the applied muscle force F.

(c) Using the equation of the line from part (a), find the RMS value of the ampli-
tude for a muscle force of 200 N.

Solution (a) The input–output relationship A = mF + b is the equation of a straight line
y = mx + b, where the slope m can be found from the EMG data given in the
table (Fig. 1.17) as

m = ΔA
ΔF

= 0.00125 − 0.0005
275 − 110

= 0.00075
165

= 4.55 × 10−6 V
N
.

The y-intercept b can be found by substituting the first data point (F,A) =
(110, 0.0005) in equation (1.16) as

0.0005 = 4.55 × 10−6(110) + b.

Solving for b yields

b = 5 × 10−7 ≈ 0.

Therefore, the equation of the straight line representing the RMS amplitude
as a function of applied force is given by

A = 4.55 × 10−6 F. (1.17)

(b) The plot of the RMS amplitude as a function of the applied muscle force is
shown in Fig. 1.18.

F, N
1000 200 300

A, V

0.0005

0.001

0.0015

m  4.55  10 6

Figure 1.18 Plot of the RMS amplitude versus the applied muscle force.
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(c) The RMS value of the amplitude for a muscle force of 200 N can be found by
substituting F = 200 N in equation (1.17) as

A = 4.55 × 10−6 × (200) = 0.91 × 10−3 V.

Example
1-8

A civil engineer needs to establish the elevation of the cornerstone for a building
located between two benchmarks, B1 and B2, of known elevations as shown in
Fig. 1.19.

B2

Sea level

Building
cornerstone

E2

E

l
E1

B1

E* l1 (m) E (m)
B1 0 428.4
B2 1001.2 476.8

Figure 1.19 Elevations along a uniform grade.

The elevation E along the grade satisfies the linear relationship

E = m l + E1, (1.18)

where E1 is the elevation of B1, l is the distance from B1 along the grade, and m is
the average slope of the grade.

(a) Find the equation of the line E and determine the slope m of the grade.

(b) Using the equation of the line from part (a), find the elevation of the corner-
stone E∗ if it is located at a distance l = 565 m from B1.

(c) Sketch the graph of E as a function of l and clearly indicate both the slope m
and elevation E1 of B1.

Solution (a) The equation of elevation given by equation (1.18) is a straight line in the
slope-intercept form y = mx + b, where the slope m can be found from the
elevation data given in Fig. 1.19 as

m = ΔE
Δl

= 476.8 − 428.4
1001.2 − 0

= 48.4
1001.2

= 0.0483.

The y-intercept E1 can be found by substituting the first data point (l,E) =
(0, 428.4) in equation (1.18) as

428.4 = 0.0483 × (0) + E1.

Solving for E1 yields

E1 = 428.4 m.
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Therefore, the equation of the straight line representing the elevation as a
function of distance l is given by

E = 0.0483 l + 428.4 m. (1.19)

(b) The elevation E∗ of the cornerstone can be found by substituting l = 565 m in
equation (1.19) as

E∗ = 0.0483 × (565) + 428.4 = 455.7 m.

(c) The plot of the elevation as a function of the length is shown in Fig. 1.20.

428.4

y-intercept

0 565

476.8

1

0.0483 m

E1

E*
455.7

l, m

Elevation, m

E2

Cornerstone 

1001.2

Figure 1.20 Elevation along a uniform grade.

PROBLEMS

1-1. A constant force F = 2.5 N is applied
to a spring, and the displacement x is
measured as 0.05 m. If the spring force
and displacement satisfy the linear rela-
tion F = k x, find the stiffness k of the
spring.

x

f
k

F (N) x (m)
2.5 0.05

Figure P1.1 Displacement of a spring in
problem P1-1.

1-2. The spring force F and displacement
x for a close-wound tension spring are
measured as shown in Fig. P1.2. The
spring force F and displacement x satisfy
the linear equation F = k x + Fi, where
k is the spring constant and Fi is the
preload induced during manufacturing
of the spring.
(a) Using the given data in Fig. P1.2,

find the equation of the line for the
spring force F as a function of the
displacement x, and determine the
values of the spring constant k and
preload Fi.
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(b) Sketch the graph of F as a function
of x. Use appropriate axis scales
and clearly label the preload Fi, the
spring constant k, and both given
data points on your graph.

F (N) x (cm)
34.5 1.5
57.0 3.0

Figure P1.2 Close-wound tension spring for
problem P1-2.

1-3. The spring force F and displacement
y for a close-wound tension spring are
measured as shown in Fig. P1.3. The
spring force F and displacement y satisfy

the linear equation y = 1
k

F −
Fi

k
, where

k is the spring constant and Fi is the
preload induced during manufacturing
of the spring.
(a) Determine the spring constant k

and the pre-load Fi using the given
data in Fig. P1.3.

(b) Sketch the graph of the line y(F)
and clearly indicate both the spring
constant k and preload Fi on the
graph.

F (lbf) y (in.)
100 1.0
75 0.5

Figure P1.3 Close-wound tension spring.

1-4. In a bolted connection shown in Fig.
P1.4, the force in the bolt Fb is given
in terms of the external load P as Fb =
C P + Fi.
(a) Given the data in Fig. P1.4, deter-

mine the joint constant C and the
preload Fi.

(b) Plot the bolt force Fb as a function
of the load P and label C and Fi on
the graph.

P

P (lb) Fb (lb)
100 200
600 400

Figure P1.4 Bolted connection.

1-5. The number of college courses that Jan-
ice has completed toward her engineer-
ing degree after her first and third year
of college is summarized in the table
shown in Fig. P1.5. Assume that the total
number of college courses that Janice
has completed satisfies the linear rela-
tionship Ctotal(t) = m t + CHS, where m
is the number of college courses com-
pleted per year and CHS is the number
of college courses she completed while
still in high school.
(a) Using the data given in Fig. P1.5,

find the equation of the line repre-
senting the total number of college
courses Ctotal, and determine both
the number of college courses per
year m and the number of courses
she completed in high school CHS.

(b) Sketch the graph of the line Ctotal(t),
and clearly indicate both the num-
ber of college courses per year m
and the number of courses she com-
pleted while still in high school CHS
on the graph.

(c) If it takes 40 total courses for Janice
to complete her engineering degree
and she keeps taking courses at the
same annual rate, how long will it
take for Janice to finish her degree?

t (years) Ctotal(t)
1 10
3 26

Figure P1.5 Number of courses completed.



Trim Size: 8in x 10in Rattan2e c01.tex V1 - 03/15/2021 2:56pm Page 20�

� �

�

20 Chapter 1 Straight Lines in Engineering

1-6. The velocity v(t) of a ball thrown
upward satisfies the equation v(t) = vo +
at, where vo is the initial velocity of the
ball in ft/s and a is the acceleration in
ft/s2.

v(t)
v(t) (ft/s) t (s)

67.8 1.0
3.4 3.0

Figure P1.6 A ball thrown upward with an initial
velocity vo.

(a) Given the data in Fig. P1.6, find
the equation of the line represent-
ing the velocity v(t) of the ball, and
determine both the initial velocity
vo and the acceleration a.

(b) Sketch the graph of the line v(t),
and clearly indicate both the ini-
tial velocity and the acceleration
on your graph. Also determine the
time at which the velocity is zero.

1-7. The alternating strength Sa and mean
strength Sm for the modified Goodman
fatigue criterion are measured for the
two load cases as shown in the table
given below. The alternating strength Sa
and mean strength Sm satisfy the lin-

ear equation Sa = Se −
Se

Sut
Sm, where Se

is the endurance limit and Sut is the
ultimate tensile strength of the material
being used.
(a) Determine the endurance limit Se

and the ultimate tensile strength Sut
using the given data. Clearly write
the equation of the line Sa(Sm).

(b) Sketch the graph of the alternating
strength versus mean strength and
clearly indicate Se and Sut on the
graph.

Sm (ksi) Sa(ksi)
60 10
20 30

1-8. A model rocket is fired in the vertical
plane. The velocity v(t) is measured as
shown in Fig. P1.8. The velocity satisfies
the equation v(t) = vo + a t, where vo is
the initial velocity of the rocket in m/s
and a is the acceleration in m/s2.
(a) Given the data in Fig. P1.8, find the

equation of the line representing
the velocity v(t) of the rocket, and
determine both the initial velocity
vo and the acceleration a.

(b) Sketch the graph of the line v(t)
for 0 ≤ t ≤ 8 s, and clearly indi-
cate both the initial velocity and
the acceleration on your graph.
Also determine the time at which
the velocity is zero (i.e., the time
required to reach the maximum
height).

v(t) 
v(t) (m/s) t (s)

34.3 0.5
19.6 2.0

Figure P1.8 A model rocket fired in the vertical
plane.

1-9. The electrical resistivity 𝜌t (Ω-nm) at two
different temperatures T (∘C) of a cop-
per nickel alloy is measured as shown
in Fig. P1.9. The resistivity 𝜌t and tem-
perature T satisfy the linear equation
𝜌t = 𝜌o + 𝛼T, where 𝛼 and 𝜌o are mate-
rial constants measured in Ω-nm∕∘C and
Ω-nm, respectively.
(a) Given the data in Fig. P1.9, find

the equation of the line represent-
ing the resistivity 𝜌t as a func-
tion of temperature T, and deter-
mine the values of the material con-
stants 𝛼 and 𝜌o. Note that “Ω-nm”
is pronounced “ohm-nanometers”
and you may leave the units as
given.

(b) Sketch the graph of the line 𝜌t as a
function of T, and clearly indicate 𝛼

and 𝜌o on your graph.
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T (∘C) 𝜌t (Ω-nm)
50.0 45
−100 35

Figure P1.9 Electrical resistance of copper nickel
alloy.

1-10. The velocity of a vehicle is measured at
two distinct points in time as shown in
Fig. P1.10. The velocity satisfies the rela-
tionship v(t) = vo + at, where vo is the
initial velocity in m/s and a is the accel-
eration in m/s2.
(a) Find the equation of the line v(t),

and determine both the initial
velocity vo and the acceleration a.

(b) Sketch the graph of the line v(t), and
clearly label the initial velocity, the
acceleration, and the total stopping
time on the graph.

v(t) (m/s) t (s)
30 1.0
10 2.0

Figure P1.10 Velocity of a vehicle during braking
in problem P1-10.

1-11. The behavior of a material that exhibits
bilinear kinematic hardening can be
approximated with a linear relationship
in the plastic region, as shown in Fig.
P1.11. The stress, 𝜎 (MPa) and strain,
𝜀 (unitless) satisfy the linear equation
𝜎(𝜀) = Et 𝜀 + 𝜎o, where Et is the strain
hardening or tangent modulus and 𝜀o
is the nominal stress, both measured in
MPa.
(a) Using the data from the tensile test

given in the table, find the equation
of the line for the measured stress
𝜎 as a function of the strain 𝜀, and
determine the values of the tangent
modulus Et and nominal stress 𝜎o.

(b) Sketch the graph of the line 𝜎 as a
function of 𝜀, and clearly indicate

both the tangent modulus Et and
the nominal stress 𝜎o on your graph.

Plastic Region

(MPa)

Sut

Sy Et

ε

σ

yε utε

Stress 𝜎 (MPa) Strain 𝜀

370 0.01
440 0.15

Figure P1.11 Stress–strain relation in the plastic
region.

1-12. The velocity v(t) of a vehicle during
braking is given in Fig. P1.12. Determine
the equation for v(t) for
(a) 0 ≤ t ≤ 2 s
(b) 2 ≤ t ≤ 4 s
(c) 4 ≤ t ≤ 6 s

0 2 4 6

30

15

t, s

v(t), m/s

Figure P1.12 Velocity of a vehicle during braking
in problem P1-12.

1-13. A linear trajectory is planned for a robot
to pick up a part in a manufacturing pro-
cess. The velocity of the trajectory of
one of the joints is shown in Fig. P1.13.
Determine the equation of v(t) for
(a) 0 ≤ t ≤ 1 s
(b) 1 ≤ t ≤ 3 s
(c) 3 ≤ t ≤ 4 s



Trim Size: 8in x 10in Rattan2e c01.tex V1 - 03/15/2021 2:56pm Page 22�

� �

�

22 Chapter 1 Straight Lines in Engineering

15

0 1 3 4
t, s

v(t), m/s

Figure P1.13 Velocity of a robot trajectory.

1-14. The acceleration of the linear trajectory
of problem P1-13 is shown in Fig. P1.14.
Determine the equation of a(t) for
(a) 0 ≤ t ≤ 1 s
(b) 1 ≤ t ≤ 3 s
(c) 3 ≤ t ≤ 4 s

0 1 3 4

10

10

a(t), m/s2

t, s

Figure P1.14 Acceleration of the robot trajectory.

1-15. The relationship between the Celsius
(∘C) and Fahrenheit (∘F) temperature
scales is a linear equation with a slope
and y-intercept. To obtain a formula
for conversion, the freezing and boiling
points of water for each scale are used,
as shown in the table in Fig. P1.15. Using
the data in the table, the resulting con-
version from TF to TC satisfies the linear
equation TC = k TF + TO, where k is the
slope and TO is the temperature offset in
(∘C).

TC (∘C) TF (∘F)
100 212

0 32

Figure P1.15 Temperature relationship between
the Celsius (∘C) and Fahrenheit (∘F).

(a) Determine the slope k and
y-intercept TO and write the
equation of the line for TC as a func-
tion of TF .

(b) Sketch the equation of the line for
TC and clearly indicate k and TO on
the graph.

1-16. The temperature distribution in a
well-insulated axial rod varies linearly
with respect to distance when the tem-
perature at both ends is held constant
as shown in Fig. P1.16. The temper-
ature satisfies the equation of a line
T(x) = C1 x + C2, where C1 and C2 are
constants of integration with units of
∘C/m and ∘C, respectively.
(a) Find the equation of the line T(x),

and determine both constants C1
and C2.

(b) Sketch the graph of the line T(x) for
0 ≤ x ≤ 0.5 m, and clearly label C1
and C2 on your graph. Also, clearly
indicate the temperature at the cen-
ter of the rod (x = 0.25 m).

x T(x) (∘C) x (m)
0 0.0

20 0.5

Figure P1.16 Temperature distribution in a
well-insulated axial rod in problem P1-16.

1-17. The voltage–current relationship for the
circuit shown in Fig. P1.17 is given by
Ohm’s law as V = I R, where V is the



Trim Size: 8in x 10in Rattan2e c01.tex V1 - 03/15/2021 2:56pm Page 23�

� �

�

Problems 23

applied voltage in volts, I is the current
in amps, and R is the resistance of the
resistor in ohms.
(a) Sketch the graph of I as a function

of V if the resistance is 8 Ω.
(b) Find the current I if the applied

voltage is 12 V.

V

I

R  8 Ω

Figure P1.17 Resistive circuit for problem P1-17.

1-18. A voltage source Vs is used to apply two
different voltages (12 V and 18 V) to the
single-loop circuit shown in Fig. P1.18.
The values of the measured current are
shown in Fig. P1.18. The voltage and cur-
rent satisfy the linear relation Vs = IR +
V, where R is the resistance in ohms, I is
the current in amps, and Vs is the voltage
in volts.
(a) Using the data given in Fig. P1.18,

find the equation of the line for Vs
as a function of I, and determine the
values of R and V.

(b) Sketch the graph of Vs as a function
of I and clearly indicate the resis-
tance R and voltage V on the graph.

VS

I R

V

Vs (V) I (A)
12.0 0.75
18.0 1.5

Figure P1.18 Single-loop circuit for problem P1-18.

1-19. The voltage source Vs and current I
for a single-loop circuit are measured

as shown in Fig. P1.19. The voltage
source VS and current I satisfy the linear

equation I = 1
R

VS − V
R

, where R is the

resistance in ohms and V is an unknown
voltage in volts.
(a) Using the data given in Fig. P1.19,

find the equation of the line for
the current I as a function of volt-
age VS, and determine the values of
the resistance R and unknown volt-
age V.

(b) Sketch the graph of I as a function
of VS and clearly indicate the resis-
tance R on the graph.

VS

I R

V

VS (V) I (A)
12 0.05
24 0.20

Figure P1.19 Single-loop circuit for problem P1-19.

1-20. Repeat problem P1-18 for the data
shown in Fig. P1.20.

VS

I R

V

Vs (V) I (A)
24 1.5
32 2.5

Figure P1.20 Single-loop circuit for problem P1-20.

1-21. A fuel cell’s thermodynamic voltage
change ΔV measured in millivolts is
linearly dependent on the operating
temperature T measured in ∘C. This
relationship follows the equation ΔV =
ΔVo + S

nF
T, where S is the entropy of

the system, ΔVo is the initial voltage dif-
ference, and nF is a constant.
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(a) If the quantity nF = 193 (J/mV),
determine both the initial voltage
difference ΔVo and the entropy S
and write the equation of the line
ΔV(T).

(b) Sketch the graph of ΔV as a func-
tion of T, and clearly indicate the
slope and y-intercept on your graph.

+

–

T(∘C) ΔV (mV)
25 49.0
80 −28.0

Figure P1.21 Thermodynamics of a fuel cell.

1-22. A linear model of a diode is shown in
Fig. P1.22, where Rd is the forward resis-
tance of the diode and VON is the volt-
age that turns the diode ON. To deter-
mine the resistance Rd and voltage VON ,
two voltage values are applied to the
diode and the corresponding currents
are measured. The applied voltage VS
and the measured current I are given
in Fig. P1.22. The applied voltage and
the measured current satisfy the linear
equation Vs = I Rd + VON .
(a) Find the equation of the line for Vs

as a function of I and determine the
resistance Rd and the voltage VON .

(b) Sketch the graph of VS as a function
of I, and clearly indicate the resis-
tance Rd and the voltage VON on
the graph.

Rd

VON

I

VS

Vs (V) I (A)
2.0 0.035
6 0.135

Figure P1.22 Linear model of a diode for problem
P1-22.

1-23. The output voltage, vo, of the OP-AMP
circuit shown in Fig. P1.23 satisfies

the relationship vo =
(

1 + 100
R

) (
vin
2

)
−(

100
R

)
vb, where R is the unknown resis-

tance in kΩ and vb is the unknown volt-
age in volts. Fig. P1.23 gives the values
of the output voltage for two different
values of the input voltage.
(a) Determine the equation of the line

for vo as a function of vin and find
the values of R and vb.

(b) Plot the output voltage vo as a func-
tion of the input voltage vin. On the
plot, clearly indicate the value of
the output voltage when the input
voltage is zero (y-intercept) and the
value of the input voltage when the
output voltage is zero (x-intercept).

R kΩ

vin
vb

OP-AMP
vo100 kΩ

100 kΩ

100 kΩ

vin (V) vo (V)
5 7

10 22

Figure P1.23 An OP-AMP circuit as a summing
amplifier for problem P1.23.

1-24. The output voltage, vo, of the OP-AMP
circuit shown in Fig. P1.24 satisfies
the relationship vo = −

(
v2 +

100
R

vin

)
,

where R is the unknown resistance in
kΩ, vin is the input voltage, and v2 is the
unknown voltage. Fig. P1.24 gives the
values of the output voltage for two dif-
ferent values of the input voltage vin.
(a) Find the equation of the line for vo

as a function of vin and determine
the values of R and v2.

(b) Plot the output voltage vo as a func-
tion of the input voltage vin. Clearly
indicate the value of the output
voltage when the input voltage is
zero (y-intercept) and the value of
the input voltage when the output
voltage is zero (x-intercept).
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OP−AMP

vo

v2

vin
R kΩ

100 kΩ

100 kΩ vin (V) vo (V)
5 − 4.5

10 − 7.0

Figure P1.24 An OP-AMP circuit for
problem P1-24.

1-25. A manually operated controlled descent
device utilizes a cam assembly to apply
friction on a rope to control the speed
of descent. The user must actively apply
pressure to the handle to allow the rope
to slide. No pressure at all locks the
device and stops the descent. The inter-
ference I, measured in inches and con-
trolled by the grip pressure, is linearly
related to the descent velocity v as v =
kI + vf , where k is a constant of pro-
portionality between how fast an object
falls and the engagement of the device
and vf is the velocity of rapid descent.
(a) Using the given data points given in

Fig. P1.25 , determine both the rapid
descent velocity vf and the constant
k and explicitly write the equation
of the line v(I).

(b) Sketch the graph of v as a function
of I, and clearly indicate the slope
and y-intercept on your graph.

(c) Determine how much interfer-
ence is needed to completely stop
descent and label this point on your
graph in part (b).

v (ft/s) I (in.)
2.5 3/16
7.5 1/16

Figure P1.25 Manually operated controlled
descent device for problem P1-25.

1-26. A DC motor is driving an inertial load
JL shown in Fig. P1.26. To maintain
a constant speed, two different values
of the voltage ea are applied to the

motor. The voltage ea and the current
ia flowing through the armature wind-
ing of the motor satisfy the relationship
ea = ia Ra + eb, where Ra is the resis-
tance of the armature winding in ohms
and eb is the back-emf in volts. Figure
P1.26 gives the values of the current for
two different values of the input volt-
age applied to the armature of the DC
motor.
(a) Find the equation of the line for ea

as a function of ia and determine the
values of Ra and eb.

(b) Plot the applied voltage ea as a func-
tion of the current ia. Clearly indi-
cate the value of the back-emf eb
and the winding resistance Ra.

Load

ia

eb
Gear ratio  20

Tm

m, m

Jm

Ra

Jtach

TACH

JL

Motorea

etach

θ ω

ia (A) ea (V)
1.0 5.0

2.25 10.0

Figure P1.26 Voltage–current data of a DC motor
in problem P1-26.

1-27. The accelerator of a vehicle controls the
rpm (rev/min) of an engine by adjust-
ing how much air enters into the intake
through a throttle cable. The engine rpm
behaves linearly as a function of the
position of the accelerator controlled
by the driver as N(𝜙) = No + S 𝜙, where
N(𝜙) is the engine rpm, 𝜙 is the position
of the accelerator measured in degrees,
and S is the sensitivity of the accelerator.
(a) Using the data points given in Fig.

P1.27, determine both the sensitivity
S and idling rpm No, and explicitly
write the equation of the line N(𝜙).

(b) Sketch the graph of N as a function
of 𝜙, and clearly indicate the slope
and y-intercept on your graph.

(c) If the maximum rpm of the engine
is Nmax = 2000 rpm, determine the
maximum position of the accelera-
tor, 𝜙max.
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𝜙 (degrees) N (rpm)
10 900
30 1300

Figure P1.27 Vehicle engine rpm data for problem
P1-27.

1-28. In the active region, the output voltage
vo of the n-channel enhancement-type
MOSFET (NMOS) circuit shown in
Fig. P1.28 satisfies the relationship vo =
VD − RD iD, where RD is the unknown
drain resistance and VD is the unknown
drain voltage. Figure P1.28 gives the val-
ues of the output voltage for two dif-
ferent values of the drain current. Plot
the output voltage vo as a function of
the input drain current iD. On the plot,
clearly indicate the values of RD and VD.

G

VD

S

vi

vo

RD

iD

vo (V) iD (mA)
0 10
5 5

Figure P1.28 NMOS for problem P1-28.

1-29. An actuator used in a prosthetic arm
can produce different amounts of force
by changing the voltage of the power
supply. The force and voltage satisfy the
linear relation F = kV, where V is the
voltage applied and F is the force pro-
duced by the prosthetic arm. The maxi-
mum force the arm can produce is 50.0
N when supplied with 10 V.
(a) Find the force produced by the actu-

ator when supplied with 6.0 V.
(b) What voltage is needed to achieve a

force of 5.0 N?
(c) Using the results of parts (a) and

(b), sketch the graph of F as a

function of voltage V. Use the
appropriate scales and clearly label
the slope and the results of parts (a)
and (b).

1-30. The following two measurements of
maximum heart rate R (in beats per
minute, bpm) were recorded in an
exercise physiology laboratory.

R (bpm) A (years)
183 30

169.5 45

Figure P1.30 Maximum heart rate recorded in an
exercise physiology laboratory.

The maximum heart rate R and age A
satisfy the linear equation

R = mA + B,

where R is the heart rate in beats per
minute and A is the age in years.
(a) Using the data provided in Fig.

P1.30, find the equation of the line
for R.

(b) Sketch R as a function of A.
(c) Using the relationship developed in

part (a), find the maximum heart
rate of a 60-year-old person.

1-31. The electrical activity of muscles can
be monitored with an electromyogram
(EMG). The RMS amplitude measure-
ments of the EMG signal when a person
is using the hand grip muscle to tighten
the lid on a jar is given in the table
below:

A (V) F (N)
0.5 E–3 100
1.25 E–3 250

The RMS amplitude of the EMG signal
satisfies the linear equation A = m F +
B, where A is the RMS amplitude in
volts, F is the applied muscle force in N,
and m is the slope of the line.
(a) Using the data provided in the table,

find the equation of the line for
A(F).
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(b) Sketch A as a function of F.
(c) Using the relationship developed in

part (a), find the RMS amplitude for
a muscle force of 200 N.

1-32. A civil engineer needs to establish the
elevation of the cornerstone for a build-
ing located between two benchmarks,
B1 and B2 of known elevations, as
shown in Fig. P1.32.

B2

Sea level

Building
cornerstone

E

l

B1

l1 (m) E (m)
B1 0 500
B2 500 600

Figure P1.32 Elevations along a uniform grade for
problem P1-32.

The elevation E along the grade satisfies
the linear relationship

E = m l + E1, (1.20)

where E1 is the elevation of B1, l is the
distance from B1 along the grade, and
m is the rate of change of E with respect
to l.
(a) Find the equation of the line E and

determine the slope m of the linear
relationship.

(b) Using the equation of the line from
part (a), find the elevation of the
cornerstone E∗ if it is located at a
distance l = 300 m from B1.

(c) Sketch the graph of E as a function
of l and clearly indicate both the
slope m and elevation E1 of B1.

1-33. During machining of some polycrys-
talline metals, the shear strength 𝜏s
increases linearly with the normal stress
𝜎s applied to the shear plane, as tabu-
lated in Fig. P1.33. The shear strength 𝜏s
and applied normal stress 𝜎s satisfy the
linear equation 𝜏s = 𝜏so + k 𝜎s, where k
is a material property and 𝜏so is the shear
strength of the uncut material.
(a) Using the data given in Fig. P1.33,

determine the material property
k and the uncut material shear
strength 𝜏so using the given data for

Aluminum 6061. Clearly write the
equation of the line 𝜏s(𝜎s).

(b) Sketch the graph of the line 𝜏s(𝜎s),
and clearly indicate k and 𝜏so on the
graph.

𝜏s (MPa) 𝜎s (MPa)
277 280
282 300

Figure P1.33 Normal and shearing stress during
machining.

1-34. The voltage across a thermocouple is
calibrated using the boiling point of
water (373 K) and the freezing point of
silver (1235 K), as shown in Fig. P1.34.

Metal B
Measuring
Junction

Voltmeter

Metal A T (K) V (mV)
373 10.0
1235 70.0

Figure P1.34 Thermocouple to measure
temperature in Kelvin.

The junction temperature T and the
voltage across the thermocouple V sat-
isfy the linear equation T = 1

𝛼
V + TR,

where 𝛼 is the thermocouple sensitivity
in mV/K and TR is the reference temper-
ature in K.
(a) Using the calibration data given in

Fig. P1.34, find the equation of the
line for the measured temperature
T as a function of the voltage V and
determine the value of the sensitiv-
ity 𝛼 and the reference temperature
TR.

(b) Sketch the graph of T as a function
of V and clearly indicate both the
reference temperature TR and the
sensitivity 𝛼 on the graph.

1-35. The behavior of a material that exhibits
bilinear kinematic hardening can be
approximated with a linear relationship
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in the plastic region. For a force-
controlled experiment, the data in the
plastic region is given in the table below
Fig. P1.35

Plastic
Region σ (ksi)

εy

εut

ε

SutSy

Et

1 Stress, 𝜎 (ksi) Strain
25.5 0.2
18.23 0.1

Figure P1.35 Stress–strain relationship of a
material.

The stress 𝜎 (ksi) and strain, 𝜀 (dimen-
sionless) satisfy the linear equation

𝜀(𝜎) = 1
Et

𝜎 −
𝜎o

Et
, where Et is the strain

hardening or tangent modulus and 𝜎o is
the nominal stress, both measured in ksi.
(a) Determine the slope and

y-intercept of 𝜀(𝜎) and write the
equation of the line for the mea-
sured strain 𝜀 as a function of the
stress 𝜎.

(b) Determine the values of the tangent
modulus Et and nominal stress 𝜎o.

(c) Sketch the graph of the line 𝜀(𝜎),
and clearly indicate Et and 𝜎o on the
graph.

1-36. Strain is a measure of the deformation
of an object. It can be measured using a
foil strain gauge shown in Fig. P1.36.

End Loops

End Loops

Grid

Alignment
Marks

Backing and
Encapsulation

Active
Grid Length

Soldier Tabs

R (Ω) 𝜀 (m/m)
100 0
102 0.01

Figure P1.36 Foil strain gauge to measure strain in
problem P1-36.

The strain being measured (𝜀) and resis-
tance of the sensor satisfy the linear

equation R = Ro + Ro S𝜀 𝜀, where Ro
is the initial resistance (measured in
ohms, Ω) of the sensor with no strain,
and S𝜀 is the gauge factor (a multiplier
with NO units).
(a) Using the given data, find the

equation of the line for the sensor’s
resistance R as a function of the
strain 𝜀, and determine the values of
the gauge factor S𝜀 and initial resis-
tance Ro.

(b) Sketch the graph of R as a function
of 𝜀, and clearly indicate Ro on your
graph.

1-37. In a pressure-fed journal bearing, forced
cooling is provided by a pressurized
lubricant flowing along the axial direc-
tion of the shaft (the x-direction). The
lubricant pressure p(x) satisfies the lin-

ear equation p(x) = −
ps

l
x + ps, where ps

is the supply pressure and l is the length
of the bearing.
(a) Using the data given in the table,

find the equation of the line for the
lubricant pressure p(x) and deter-
mine the values of the supply pres-
sure ps and the bearing length l.

(b) Sketch the graph of the lubricant
pressure p(x), and clearly indicate
both the supply pressure ps and the
bearing length l on your graph.

Bearing

Groove

Journal

l

y

c x

ps

p(x) (psi) x (in)
30 1.0
10 3.0

Figure P1.37 Pressure-fed journal bearing.

1-38. To determine the concentration of a
purified protein sample, a graduate stu-
dent used spectrophotometry to mea-
sure the absorbance given in the table
below:
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c (𝜇g/ml) a
3.50 0.342
8.00 0.578

Figure P1.38 Concentration of a purified protein
sample.

The concentration–absorbance rela-
tionship for this protein satisfies a linear
equation a = m c + ai, where c is the
concentration of a purified protein, a
is the absorbance of the sample, m is
the rate of change of absorbance a with
respect to concentration c, and ai is the
y-intercept.
(a) Find the equation of the line

that describes the concentration–
absorbance relationship for this
protein and determine the slope m
of the linear relationship.

(b) Using the equation of the line from
part (a), find the concentration of
the sample if this sample had an
absorbance of 0.486.

(c) If the sample is diluted to a con-
centration of 0.00419 𝜇g/ml, what
would you expect the absorbance to
be? Would this value be accurate?

(d) Sketch the graph of absorbance a
as a function of concentration c and
clearly indicate both the slope m
and the y-intercept.

1-39. A thermostat control with dial marking
from 0 to 100 is used to regulate the
temperature of an oil bath. To calibrate
the thermostat, the data for the temper-
ature T (∘F) versus the dial setting R was
obtained as shown in the table below:

T (∘F) R
110.0 20.0
40.0 40.0

Figure P1.39 Calibration of a thermostat.

The relationship between the tempera-
ture T in Fahrenheit and the dial setting
R satisfies the linear equation T(∘F) =
a R + b.
(a) Using the given data, find the

equation of the line relating the
temperature to the dial setting.

(b) Sketch the graph of T(∘F) as a func-
tion of R, and clearly indicate a and
b on your graph.

(c) Calculate the thermostat setting
needed to obtain a temperature of
320∘F.

1-40. A chemistry student is perform-
ing an experiment to determine the
temperature-volume behavior of a gas
mixture at constant pressure and quan-
tity. Due to technical difficulties, the
student could only obtain values at
two temperatures as shown in the table
below:

T (∘C) V (L)
50 1.08
98 1.24

Figure P1.40 Temperature–volume behavior of a
gas mixture at constant pressure.

The student knows that the gas volume
linearly depends on temperature, that is,
V(T) = m T + K, where V is the volume
in L, T is the temperature in ∘C, K is the
y-intercept in L, and m is the slope of the
line in L/∘C.
(a) Find the equation of the line that

describes the temperature–volume
relationship of the gas mixture and
determine the slope m of the linear
relationship.
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(b) Using the equation of the line
from part (a), find the temperature
of the gas mixture if the volume
is 1.15 L.

(c) Using the equation of the line from
part (a), find the volume of the gas
if the temperature is 70∘C.

(d) Sketch the graph of the volume–
temperature relationship for the gas
mixture from −300 ∘C to 100 ∘C
and clearly indicate both the slope
m and the y-intercept. What is
the significance of the temperature
when V = 0 L?
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in Engineering

CHAPTER
2

In this chapter, the applications of quadratic equations in engineering are introduced.
It is assumed that students are familiar with this topic from their high school algebra
course. A quadratic equation is a second-order polynomial equation in one variable
that occurs in many areas of engineering. For example, the height of a ball thrown
in the air can be represented by a quadratic equation. In this chapter, the solution
of quadratic equations will be obtained by three methods: factoring, the quadratic
formula, and completing the square.

2.1 A PROJECTILE IN A VERTICAL PLANE

Suppose a ball thrown upward from the ground with an initial velocity of 96 ft/s
reaches a height h(t) after time t s as shown in Fig. 2.1. The height is expressed by the
quadratic equation h(t) = 96 t − 16 t2 ft. Find the time t in seconds when h(t) = 80 ft.

h(t) = 96 t − 16 t2

Figure 2.1 A ball thrown upward to a height of h(t).

Solution:

h(t) = 96 t − 16 t2 = 80

or
16 t2 − 96 t + 80 = 0. (2.1)

Equation (2.1) is a quadratic equation of the form ax2 + bx + c = 0 and will be solved
using three different methods.

Method 1: Factoring

Dividing equation (2.1) by 16 yields

t2 − 6 t + 5 = 0. (2.2)

31
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Equation (2.2) can be factored as

(t − 1)(t − 5) = 0.

Therefore, t − 1 = 0 or t = 1 s and t − 5 = 0 or t = 5 s. Hence, the ball reaches the
height of 80 ft at 1 s and 5 s.

Method 2: Quadratic Formula

If ax2 + bx + c = 0, then the quadratic formula to solve for x is given by

x = −b ±
√

b2 − 4ac
2a

. (2.3)

Using the quadratic formula in equation (2.3), the quadratic equation (2.2) can be
solved as

t = 6 ±
√

36 − 20
2

= 6 ± 4
2

.

Therefore, t = 6 − 4
2

= 1 s and t = 6 + 4
2

= 5 s. Hence, the ball reaches the height of
80 ft at 1 s and 5 s.

Method 3: Completing the Square

First, rewrite the quadratic equation (2.2) as

t2 − 6 t = −5. (2.4)

Adding the square of
(
−6

2

)
(one-half the coefficient of the first-order term) to both

sides of equation (2.4) gives

t2 − 6 t +
(
−6

2

)2

= −5 +
(
−6

2

)2

,

or
t2 − 6 t + 9 = −5 + 9. (2.5)

Equation (2.5) can now be written as

(t − 3)2 = (±
√

4)2

or
t − 3 = ±2.

Therefore, t = 3 ± 2 or t = 1, 5 s. To check if the answer is correct, substitute t = 1 and
t = 5 into equation (2.1). Substituting t = 1 s gives

162 × 12 − 96 × 1 + 80 = 0,



Trim Size: 8in x 10in Rattan2e c02.tex V1 - 03/15/2021 9:15pm Page 33�

� �

�

2.1 A Projectile in a Vertical Plane 33

which gives 0 = 0. Therefore, t = 1 s is the correct time when the ball reaches a height
of 80 ft. Now, substitute t = 5 s,

16 × 52 − 96 × 5 + 80 = 0,

which again gives 0 = 0. Therefore, t = 5 s is also the correct time when the ball
reaches a height of 80 ft.

It can be seen from Fig. 2.2 that the height of the ball is 80 ft at both 1 s and 5 s. The
ball is at 80 ft and going up at 1 s, and it is at 80 ft and going down at 5 s. Hence, the
maximum height of ball must be halfway between 1 and 5 s, which is 1 + ((5 − 1)∕2) =
3 s. Therefore, the maximum height can be found by substituting t = 3 s in h(t), which
is h(3) = 96(3) − 16(3)2 = 144 ft. These three points (height at t = 1, 3, and 5 s) can
be used to plot the trajectory of the ball. However, to plot the trajectory accurately,
additional data points can be added. The height of the ball at t = 0 is zero since the
ball is thrown upward from the ground. To check this, substitute t = 0 in h(t). This
gives h(0) = 96(0) − 16(0)2 = 0 ft. The time when the ball hits the ground again can
be calculated by equating h(t) = 0. Therefore,

96 t − 16 t2 = 0

6 t − t2 = 0

t (6 − t) = 0.

Therefore, t = 0 and 6 − t = 0 or t = 6 s. Since the ball is thrown in the air from the
ground (h(t) = 0) at t = 0, it will hit the ground again at t = 6 s. Using these data
points, the trajectory of the ball thrown upward with an initial velocity of 96 ft/s is
shown in Fig. 2.2.

0
0

50

80

100

144
hmax

1 2 3 4 5 6
t, s

h(t), ft

Figure 2.2 The height of the ball thrown upward with an initial velocity of 96 ft/s.
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Suppose now you wish to find the time t in seconds when the height of the ball reaches
144 ft. Setting h(t) = 144 gives

h(t) = 96 t − 16 t2 = 144.

Therefore,

16 t2 − 96 t + 144 = 0

or

t2 − 6 t + 9 = 0. (2.6)

The quadratic equation given in equation (2.6) can also be solved using the three
methods as

Factoring Quad Formula Completing the Square

t2 − 6t + 9 = 0

(t − 3) (t − 3) = 0

t − 3 = 0

t = 3 s

t2 − 6t + 9 = 0

t = 6 ±
√

36 − 36
2

t = 3 ± 0

t = 3, 3

t = 3 s

t2 − 6t + 9 = 0

t2 − 6t = −9

t2 − 6t +
(
−6

2

)2

= −9 +
(
−6

2

)2

t2 − 6t + 9 = 9 − 9

= 0

(t − 3)2 = 0

t − 3 = ±0

t = 3, 3

t = 3 s

Now suppose you wish to find the time t when the height of the ball reaches h(t) =
160 ft. Setting h(t) = 160 gives

h(t) = 96t − 16t2 = 160.

Therefore,

16t2 − 96t + 160 = 0

or

t2 − 6t + 10 = 0. (2.7)
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The quadratic equation given in equation (2.7) can be solved using the three
methods as

Factoring Quad Formula Completing the Square

t2 − 6t + 10 = 0

cannot be factored

using real integers

t2 − 6t + 10 = 0

t = 6 ±
√

36 − 40
2

t =
6 ±

√
−4

2

t = 3 ±
√
−1

t = 3 ± j

t2 − 6t + 10 = 0

t2 − 6t = −10

t2 − 6t +
(
−6

2

)2

= −10 +
(
−6

2

)2

t2 − 6t + 9 = −1

(t − 3)2 = −1

t − 3 = ±
√
−1

t = 3 ± j

In the above solution, i = j =
√
−1 is the imaginary number; therefore the roots of the

quadratic equation are complex. Hence, the ball never reaches the height of 160 ft.
The maximum height achieved is 144 ft at 3 s.

2.2 CURRENT IN A LAMP

A 100 W lamp and a 20 Ω resistor are connected in series to a 120 V power supply as
shown in Fig. 2.3. The current I in amperes satisfies a quadratic equation as follows.
Using KVL,

120 = VL + VR.

100 W 

I

20 Ω

120 V
VL

VR

LAMP

+

+

−

−

−

+

Figure 2.3 A lamp and a resistor connected to a 120 V supply.

From Ohm’s law, VR = 20 I. Also, since the power is the product of voltage and cur-

rent, PL = VL I = 100 W, which gives VL = 100
I

. Therefore,

120 = 100
I

+ 20 I. (2.8)
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Multiplying both sides of equation (2.8) by I yields

120 I = 100 + 20 I2. (2.9)

Dividing both sides of equation (2.9) by 20 and rearranging gives

I2 − 6 I + 5 = 0. (2.10)

The quadratic equation given in equation (2.10) can be solved using the three meth-
ods as

Factoring Quad Formula Completing the Square

I2 − 6I + 5 = 0

(I − 1)(I − 5) = 0

I = 1, 5 A

I2 − 6I + 5 = 0

I = 6 ±
√

36 − 20
2

I = 3 ± 2

I = 1, 5 A

I2 − 6I + 5 = 0

I2 − 6I +
(
−6

2

)2

= −5 +
(
−6

2

)2

I2 − 6I + 9 = −5 + 9

(I − 3)2 = 4

I − 3 = ±2

I = 3 ± 2

I = 1, 5 A

Note that the two solutions correspond to two lamp choices.

Case I: For I = 1 A,

VL = 100
I

= 100
1

= 100 V.

Case II: For I = 5 A,

VL = 100
5

= 20 V.

Case I corresponds to a lamp rated at 100 V, and Case 2 corresponds to a lamp rated
at 20 V.

2.3 EQUIVALENT RESISTANCE

Suppose two resistors are connected in parallel, as shown in Fig. 2.4. If the equivalent

resistance R =
R1R2

R1 + R2
= 100 Ω and R1 = 4R2 + 100 Ω, find R1 and R2.

The equivalent resistance of two resistors connected in parallel as shown in
Fig. 2.4 is given by

R1R2

R1 + R2
= 100 Ω. (2.11)
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RR1 R2

Figure 2.4 Equivalent resistance of two resistors connected in parallel.

Substituting R1 = 4R2 + 100 Ω in equation (2.11) gives

100 =
(4 R2 + 100)(R2)
(4 R2 + 100) + R2

=
4 R2

2 + 100 R2

5 R2 + 100
. (2.12)

Multiplying both sides of equation (2.12) by 5R2 + 100 yields

100 (5 R2 + 100) = 4 R2
2 + 100 R2. (2.13)

Simplifying equation (2.13) gives

4 R2
2 − 400 R2 − 10, 000 = 0. (2.14)

Dividing both sides of equation (2.14) by 4 gives

R2
2 − 100 R2 − 2500 = 0. (2.15)

Equation (2.15) is a quadratic equation in R2 and cannot be factored with whole
numbers. Therefore, R2 is solved using the quadratic formula as

R2 =
100 ±

√
10, 000 − 4(−2500)

2
=

100 ±
√

2(10, 000)
2

.

Therefore,

R2 =
100 ± 100

√
2

2
= 50 ± 50

√
2.

Since R2 cannot be negative,

R2 = 50 + 50
√

2 = 120.7 Ω.

Substituting the value of R2 in R1 = 4R2 + 100 Ω yields

R1 = 4(120.7) + 100 = 582.8 Ω.

Therefore, R1 = 582.8 Ω and R2 = 120.7 Ω.
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2.4 FURTHER EXAMPLES OF QUADRATIC EQUATIONS IN
ENGINEERING

Example
2-1

A model rocket is fired into the air from the ground with an initial velocity of
98 m/s as shown in Fig. 2.5. The height h(t) satisfies the quadratic equation

h(t) = 98 t − 4.9 t2 m. (2.16)

(a) Find the time when h(t) = 245 m.

(b) Find the time it takes the rocket to hit the ground.

(c) Use the results of parts (a) and (b) to sketch h(t) and determine the maximum
height.

h(t) = 98 t − 4.9 t2

Figure 2.5 A rocket fired vertically in the air.

Solution
(a) Substituting h(t) = 245 in equation (2.16), the quadratic equation is given by

−4.9 t2 + 98 t − 245 = 0. (2.17)

Dividing both sides of equation (2.17) by −4.9 gives

t2 − 20 t + 50 = 0. (2.18)

The quadratic equation given in equation (2.18) can be solved using the three
methods used in Section 2.1 as

Factoring Quad Formula Completing the Square

t2 − 20t + 50 = 0

cannot be

factored with

whole numbers

t2 − 20t + 50 = 0

t =
20 ±

√
400 − 200
2

t = 10 ±
√

50

t = 10 ± 7.07

t = 2.93, 17.07 s

t2 − 20t + 50 = 0

t2 − 20t = −50

t2 − 20t + 100 = −50 + 100

(t − 10)2 = 50

t − 10 = ±
√

50

t = 10 ± 7.07

t = 2.93, 17.07 s
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(b) Since the rocket hit the ground at h(t) = 0,

h(t) = 98 t − 4.9 t2 = 0

4.9 t (20 − t) = 0.

Therefore, t = 0 s and t = 20 s. Since the rocket is fired from the ground at
t = 0 s, the rocket hits the ground again at t = 20 s.

(c) The maximum height should occur halfway between 2.93 and 17.07 s.
Therefore,

tmax = 2.93 + 17.07
2

= 20
2

= 10 s.

Substituting t = 10 s into equation (2.16) yields

hmax = 98(10) − 4.9(10)2 = 490 m.

The plot of the rocket trajectory is shown in Fig. 2.6. It can be seen from this
figure that the rocket is fired from the ground at a height of zero at 0 s, crosses
a height of 245 m at 2.93 s, and continues moving up and reaches the maximum
height of 490 m at 10 s. At 10 s, it starts its downward descent and after crossing
the height of 245 m again at 17.07 s, it reaches the ground again at 20 s.

70.7139.20 4 8 12 16 20
0

100

200

245
300

400

490
hmax

t, s

h(t), m

Figure 2.6 The height of the rocket fired vertically in the air with an initial velocity of
98 m/s.

Example
2-2

The equivalent resistance R of two resistors R1 and R2 connected in parallel as
shown in Fig. 2.4 is given by

R =
R1R2

R1 + R2
. (2.19)
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(a) Suppose R2 = 2R1 + 4 Ω and the equivalent resistance R = 8.0 Ω. Substitute
these values in equation (2.19) to obtain the following quadratic equation
for R1:

2R2
1 − 20R1 − 32 = 0.

(b) Solve for R1 by each of the following methods:
(i) Completing the square.

(ii) The quadratic formula. Also, determine the value of R2 corresponding to
the only physical solution for R1.

Solution

(a) Substituting R2 = 2R1 + 4 and R = 8.0 in equation (2.19) gives

8.0 =
R1(2 R1 + 4)

R1 + (2 R1 + 4)
=

2 R2
1
+ 4 R1

3 R1 + 4
. (2.20)

Multiplying both sides of equation (2.20) by (3R1 + 4) yields

8.0(3 R1 + 4) = 2 R2
1
+ 4 R1

or
24.0 R1 + 32.0 = 2 R2

1 + 4 R1. (2.21)

Rearranging terms in equation (2.21) gives

2 R2
1 − 20 R1 − 32 = 0. (2.22)

(b) The quadratic equation given in equation (2.22) can now be solved to find the
values of R1.
(i) Method 1: Completing the square

Dividing both sides of equation (2.22) by 2 gives

R2
1 − 10 R1 − 16 = 0. (2.23)

Taking 16 on the other side of equation (2.23) and adding
(
−10

2

)2

= 25

to both sides yields

R2
1 − 10 R1 + 25 = 16 + 25. (2.24)

Now, writing both sides of equation (2.24) as squares yields

(R1 − 5)2 = (±
√

41)2 = (± 6.4)2.



Trim Size: 8in x 10in Rattan2e c02.tex V1 - 03/15/2021 9:15pm Page 41�

� �

�

2.4 Further Examples of Quadratic Equations in Engineering 41

Therefore,

R1 − 5 = ± 6.4,

which gives the values of R1 as 5 + 6.4 = 11.4 Ω and 5 − 6.4 = −1.4 Ω.
Since the value of R1 cannot be negative, R1 = 11.4 Ω and R2 = 2R1 + 4 =
2(11.4) + 4 = 26.8 Ω.

(ii) Method 2: Solving equation (2.22) using the quadratic formula

R1 =
20 ±

√
(−20)2 − 4(2)(−32)

4

= 20 ±
√

656
4

= 20 ± 25.6
4

= 11.4,−1.4.

Since R1 cannot be negative, R1 = 11.4 Ω. Substituting R1 = 11.4 Ω in
R2 = 2 R1 + 4 gives

R2 = 2(11.4) + 4 = 26.8 Ω.

Example
2-3

An assembly of springs shown in Fig. 2.7 has an equivalent stiffness k, given by

k = k1 +
k1k2

k1 + k2
. (2.25)

If k2 = 2k1 + 4 lb/in. and the equivalent stiffness is k = 3.6 lb/in., find k1 and k2 as
follows:

(a) Substitute the values of k and k2 into equation (2.25) to obtain the following
quadratic equation for k1:

5k2
1 − 2.8 k1 − 14.4 = 0. (2.26)

(b) Using the method of your choice, solve equation (2.26) and determine the
values of both k1 and k2.

k1

k1 k2

Figure 2.7 An assembly of three springs.
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Solution (a) Substituting k2 = 2 k1 + 4 and k = 3.6 in equation (2.25) yields

3.6 = k1 +
k1(2 k1 + 4)

k1 + (2 k1 + 4)
= k1 +

2 k2
1
+ 4 k1

3 k1 + 4
. (2.27)

Multiplying both sides of equation (2.27) by (3k1 + 4) gives

3.6(3 k1 + 4) = k1(3 k1 + 4) + 2 k2
1 + 4 k1

10.8 k1 + 14.4 = 3 k2
1 + 4 k1 + 2k2

1 + 4 k1

10.8 k1 + 14.4 = 5 k2
1 + 8 k1. (2.28)

Rearranging terms in equation (2.28) gives

5 k2
1 − 2.8 k1 − 14.4 = 0. (2.29)

(b) The quadratic equation (2.29) can be solved using the quadratic formula as

k1 =
2.8 ±

√
(−2.8)2 − 4(5)(−14.4)

10

= 2.8 ± 17.2
10

= 2.0, −1.44.

Since k1 cannot be negative, k1 = 2.0 lb/in. Now, substituting k1 = 2.0 in
k2 = 2 k1 + 4 yields

k2 = 2(2) + 4 = 8.0.

Therefore,

k2 = 8.0 lb/in.

Example
2-4

A capacitor C and an inductor L are connected in series as shown in Fig. 2.8. The

total reactance X in ohms is given by X = 𝜔L − 1
𝜔C

, where 𝜔 is the angular fre-
quency in rad/s.

(a) Suppose L = 1.0 H and C = 0.25 F. If the total reactance is X = 3.0 Ω, show
that the angular frequency 𝜔 satisfies the quadratic equation 𝜔2 − 3𝜔 − 4 = 0.
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(b) Solve the quadratic equation for𝜔 by each of the following methods: factoring,
completing the square, and the quadratic formula.

CL

Figure 2.8 Series connection of L and C.

Solution (a) The total reactance of the series combination of L and C shown in Fig. 2.8 is
given by

X = 𝜔L − 1
𝜔C

. (2.30)

Substituting L = 1.0 H, C = 0.25 F, and X = 3.0 Ω in equation (2.30) yields

3.0 = 𝜔(1) − 1
𝜔(0.25)

. (2.31)

Multiplying both sides of equation (2.31) by 𝜔 gives

3𝜔 = 𝜔2 − 4. (2.32)

Rearranging terms in equation (2.32) yields

𝜔2 − 3𝜔 − 4 = 0. (2.33)

(b) The quadratic equation (2.33) can be solved by three different methods: fac-
toring, completing the squares, and the quadratic formula.
(i) Method 1: Factoring

The quadratic equation (2.33) can be factored as

(𝜔 − 4)(𝜔 + 1) = 0,

which gives 𝜔 − 4 = 0 or 𝜔 + 1 = 0. Therefore, 𝜔 = 4 rad/s or 𝜔 = −1 rad/s.
Since 𝜔 cannot be negative, 𝜔 = 4 rad/s.

(ii) Method 2: Completing the squares

The quadratic equation (2.33) can be written as

𝜔2 − 3𝜔 = 4. (2.34)

Adding
(
−3

2

)2
= 9

4
to both sides of equation (2.34) gives

𝜔2 − 3𝜔 +
(9

4

)
= 4 +

(9
4

)
.

Therefore,
𝜔2 − 3𝜔 + 9

4
= 25

4
. (2.35)
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Writing both sides of equation (2.35) as a square gives(
𝜔 − 3

2

)2
=
(
±5

2

)2

. (2.36)

Taking the square root of both sides of equation (2.36) yields

𝜔 − 3
2
= ±5

2
.

Therefore,
𝜔 = 3

2
± 5

2
,

which gives 𝜔 = 3
2
+ 5

2
= 4 rad/s or 𝜔 = 3

2
− 5

2
= −1 rad/s. Since 𝜔 cannot

be negative, 𝜔 = 4 rad/s.
(iii) Method 3: Quadratic formula

Solving the quadratic equation (2.33) using the quadratic formula gives

𝜔 =
3 ±

√
(−3)2 − 4(1)(−4)

2
. (2.37)

Equation (2.37) can be written as

𝜔 = 3 ±
√

25
2

= 3 ± 5
2

,

which gives 𝜔 = 4,−1. Since 𝜔 cannot be negative, 𝜔 = 4 rad/s.

Example
2-5

For the circuit shown in Fig. 2.3, the power P delivered by the voltage source Vs is
given by the equation P = I2 R + I VL.

(a) Suppose that P = 96 W, VL = 32 V, and R = 8 Ω. Show that the current I sat-
isfies the quadratic equation I2 + 4 I − 12 = 0.

(b) Solve the quadratic equation for I by each of the following methods: factoring,
completing the square, and the quadratic formula.

Solution

(a) Substituting P = 96 W, VL = 32 V, and R = 8 Ω into the power delivered P =
I2 R + I VL yields

96 = I2(8) + I(32). (2.38)

Dividing both sides of equation (2.38) by 8 gives

12 = I2 + 4 I. (2.39)
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Rearranging terms in equation (2.39) yields

I2 + 4 I − 12 = 0. (2.40)

(b) The quadratic equation given in equation (2.40) can be solved by three differ-
ent methods: factoring, completing the squares, and the quadratic formula.
(i) Method 1: Factoring

The quadratic equation (2.40) can be factored as
(I + 6)(I − 2) = 0,

which gives I + 6 = 0 or I − 2 = 0. Therefore, I = −6 A or I = 2 A.
(ii) Method 2: Completing the squares

The quadratic equation (2.40) can be written as

I2 + 4 I = 12. (2.41)

Adding
(4

2

)2
= 4 to both sides of equation (2.41),

I2 + 4 I + 4 = 12 + 4. (2.42)

Writing both sides of equation (2.42) as a square yields

(I + 2)2 = (± 4)2. (2.43)

Taking the square root of both sides of equation (2.43) gives

I + 2 = ± 4.

Therefore,
I = −2 ± 4,

which gives I = −2 − 4 = −6 A or I = −2 + 4 = 2 A.
(iii) Method 3: Quadratic formula

Solving the quadratic equation (2.40) using the quadratic formula gives

I =
−4 ±

√
(4)2 − 4(1)(−12)

2
. (2.44)

Equation (2.44) can be written as

I = −4 ±
√

64
2

= −4 ± 8
2

= −2 ± 4,

which gives I = −2 − 4 = −6 A or I = −2 + 4 = 2 A.

Case I: For I = −6 A, the power absorbed by the lamp is −6 × 32 = −192 W. Since
the power absorbed by the lamp cannot be negative, I = −6 A is not one of the
solutions of the quadratic equation given by (2.40).
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Case II: For I = 2 A, the power absorbed by the lamp is 2 × 32 = 64 W and the
power dissipated by the resistor is 96 − 64 = 32 W. The voltage across the resistor
VR = 2 × 8 = 16 V and using KVL, Vs = 16 + 32 = 48 V. Therefore, for the applied
power of 96 W (source voltage = 48 V), I = 2 A is the solution of the quadratic
equation given by (2.40).

Example
2-6

A diver jumps off a diving board 1.5 m above the water with an initial vertical veloc-
ity of 0.6 m/s as shown in Fig. 2.9. The diver’s height above the water is given by

h(t) = −4.905 t2 + 0.6 t + 1.5 m. (2.45)

vo =  0.6 m/s

h(t) = 1.5

1.5 m

h(t) = 0

Figure 2.9 Person jumping off a diving board.

(a) Find the time in seconds when the diver hits the water. Use both the quadratic
formula and completing the square.

(b) Find the maximum height of the diver if it is known to occur at t = 0.0612 s.

(c) Use the results of parts (a) and (b) to sketch the height h(t) of the diver as a
function of time.

Solution

(a) The time when the diver hits the water is found by setting h(t) = 0 in equation
(2.45) as

−4.905 t2 + 0.6 t + 1.5 = 0 (2.46)

Dividing both sides of equation (2.46) by −4.905 gives

t2 − 0.1223 t − 0.3058 = 0. (2.47)
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The quadratic equation given in equation (2.47) can be solved using the
quadratic formula and completing the square as outlined below.
(i) Method 1: Quadratic formula

Solving the quadratic equation (2.47) using the quadratic formula gives

t =
0.1223 ±

√
(0.1223)2 − 4(1)(−0.3058)

2
. (2.48)

Equation (2.48) can be written as

t = 0.1223 ±
√

1.2382
2

= 0.1223 ± 1.1127
2

= 0.0612 ± 0.5563,

which gives t = 0.0612 − 0.5563 = −0.495 s or t = 0.0612 + 0.5564 =
0.617 s. Since the time cannot be negative, it takes 0.617 s for the diver to
hit the water.

(ii) Method 2: Completing the square

The quadratic equation (2.47) can be written as

t2 − 0.1223 t = 0.3058. (2.49)

Adding
(
−0.1223

2

)2

= 0.0037 to both sides gives

t2 − 0.1223 t + 0.015 = 0.3058 + 0.0037. (2.50)

Writing both sides of equation (2.50) as a perfect square yields

(t − 0.0612)2 = (±
√

0.3095)2. (2.51)

Taking the square root of both sides gives

t − 0.0612 = ± 0.5563.

Therefore,
t = 0.0612 ± 0.5563,

which gives t = 0.0612 − 0.5563 = −0.495 s or t = 0.0612 + 0.5563 =
0.617 s. Since the time cannot be negative, it takes 0.617 s for the diver to
hit the water.

(b) The maximum height of the diver is found by substituting t = 0.0612 in
equation (2.45) as

hmax = h(0.0612) = −4.905(0.0612)2 + 0.6(0.0612) + 1.5 = 1.518 m.

(c) Using the results of parts (a) and (b), the diver’s height after jumping from the
diving board is plotted as shown in Fig. 2.10.
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0 0.0612 0.2 0.3 0.4 0.5 0.617 0.7
0

0.5

1

1.518

t, s

h(t), m

Figure 2.10 Height of the diver after jumping from the diving board.

Example
2-7

Pipeline Through Parabolic Hill: A level pipeline is required to pass through a hill
having the parabolic profile

y = − 0.004 x2 + 0.3 x. (2.52)

The origin of the x and y-coordinates is fixed at elevation zero near the base of the
hill, as shown in Fig. 2.11.

Pipeline path

0 xA xB
x, m

y, m

B A
2

Tunnel

Hill profile

exit
Tunnel
entry

Figure 2.11 Pipeline path through a parabolic hill.

(a) Write the quadratic equation for a pipeline elevation of y = 2 m.

(b) Solve the quadratic equation found in part (a) to determine the positions of the
tunnel entry xA and exit xB using both the quadratic formula and completing
the square.

(c) Find the length of the tunnel.
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Solution (a) Since the height y of the tunnel is 2 m, equation (2.73) can be written as

2 = −0.004 x2 + 0.3 x

which gives
0.004 x2 − 0.3 x + 2 = 0

or
x2 − 75 x + 500 = 0. (2.53)

(b) The quadratic equation given in equation (2.53) can be solved using the
quadratic formula and completing the square as outlined below.
(i) Method 1: Quadratic formula

Solving the quadratic equation (2.53) using the quadratic formula gives

x =
75 ±

√
(− 75)2 − 4(1)(500)

2
. (2.54)

Equation (2.54) can be written as

x = 75 ±
√

3625
2

= 75 ± 60.2
2

= 37.5 ± 30.1,

which gives x = 37.5 − 30.1 = 7.4 m or x = 37.5 + 30.1 = 67.6 m. There-
fore, the tunnel entry position is 7.4 m and the tunnel exit position is
67.6 m.

(ii) Method 2: Completing the square

The quadratic equation (2.53) can be written as

x2 − 75 x = −500. (2.55)

Adding
(
−75

2

)2

= 1406.25 to both sides gives

x2 − 75 x + 1406.25 = −500 + 1406.25. (2.56)

Writing both sides of equation (2.56) as a perfect square yields

(x − 37.5)2 = (±
√

906.25)2. (2.57)

Taking the square root of both sides gives

x − 37.5 = ± 30.1.

Therefore,

x = 37.5 ± 30.1,
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which gives x = 37.5 − 30.1 = 7.4 m or x = 37.5 + 30.1 = 67.6 m. To check
if the answer is correct, substitute x = 7.4 and x = 67.6 into equation (2.53).
Substituting x = 7.4 m gives

(7.42) − 75(7.4) + 500 = 0

55 − 555 + 500 = 0

0 = 0.

Now, substituting x = 67.6 m into equation (2.53) gives

(67.62) − 75(67.6) + 500 = 0

4570 − 5070 + 500 = 0

0 = 0.

Therefore, xA = 7.4 m and xB = 67.6 m are the correct positions of the
tunnel entry and exit, respectively.

(c) The tunnel length can be found by subtracting the position xA from xB as

Tunnel length = xB − xA = 67.6 − 7.4 = 60.2 m

PROBLEMS

2-1. For the circuit shown in Fig. P2.1, the
power P delivered by the voltage source
Vs is given by the quadratic equation P =
I2R + V I, where I is in amps and V is in
volts.
(a) Suppose that P = 100 W, V = 90 V,

and R = 10Ω. Show that the current I
satisfies the quadratic equation: I2 +
9I − 10 = 0.

(b) Solve the above quadratic equation
for I by each of the following meth-
ods: factoring, completing the square,
and the quadratic formula.

V 

I

R 

+
−

Vs
+

−

Figure P2.1 Resistive circuit for problem P2-1.

2-2. An analysis of a circuit shown in Fig. P2.2
yields the quadratic equation for the cur-
rent I as 3I2 − 6 I = 45, where I is in amps.

6 V 

I

R =  3 Ω

+
−

Vs
−

+

Figure P2.2 Resistive circuit for problem P2-1.

(a) Rewrite the above equation in the
form aI2 + bI + c = 0, where a, b,
and c are constants.

(b) Solve the equation in part (a) by
each of the following methods: fac-
toring, completing the square, and
the quadratic formula.

2-3. A bicep muscle shown in Fig. P2.3 can
apply a force F measured in Newtons (N)



Trim Size: 8in x 10in Rattan2e c02.tex V1 - 03/15/2021 9:15pm Page 51�

� �

�

Problems 51

as a function of the elbow angle 𝜙, mea-
sured in degrees as described by the
quadratic equation F(𝜙) = 6𝜙 − 0.04𝜙2.
(a) For a bicep force of F = 200 N, solve

the equation for 𝜙 by each of the
following methods: factoring, com-
pleting the square, and the quadratic
formula.

(b) Using your solution from part (a),
determine the elbow angle 𝜙 where
the force exerted by the bicep is max-
imum. In addition, calculate the max-
imum force Fmax.

(c) Plot F versus 𝜙 and clearly indicate
the maximum force on the graph.
Also clearly label the x-intercepts on
the graph.

F

ϕ

Figure P2.3 Force applied by bicep muscle.

2-4. The current flowing through the induc-
tor shown in Fig. P2.4 is given by the
quadratic equation i(t) = t2 − 8t. Find t
when
(a) i(t) = 9 A (use the quadratic for-

mula), and
(b) i(t) = 84 A (use completing the

square).

+
−v(t)

i(t)

L = 1H

v(t) = 2t − 8 

Figure P2.4 Current flowing through an inductor.

2-5. The voltage across the capacitor shown
in Fig. P2.5 is given by the quadratic
equation v(t) = t2 − 6t. Find t when
(a) v(t) = 7 V (use the quadratic for-

mula), and
(b) v(t) = −9 V (use completing the

square).

v(t)

i(t)

C = 100 μF

i(t) = (0.2 t  − 0.6) mA

+
−

Figure P2.5 Voltage across a capacitor.

2-6. In the purely resistive circuit shown in
Fig. P2.6, the total resistance R of the cir-
cuit is given by

R = R1 +
R1R2

R1 + R2
. (2.58)

If the total resistance of the circuit is R =
100 Ω and R2 = 2R1 + 100 Ω, find R1 and
R2 as follows:
(a) Substitute the values of R and R2

into equation (2.58), and simplify the
resulting expression to obtain a single
quadratic equation for R1.

(b) Using the method of your choice,
solve the quadratic equation for
R1 and compute the corresponding
value of R2.

R2R1

R1

R

Figure P2.6 Series–parallel combination of
resistors.
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2-7. A quadcopter drone shown in Fig. P2.7 is
launched from the roof at time t = 0 s and
follows a predefined flight profile. The
height of the drone satisfies the quadratic
equation h(t) = 20 + 26t − 2t2 meters.
(a) Find the value(s) of the time t when

h(t) = 92 m by factoring.
(b) Find the value(s) of the time t when

h(t) = 150 m using the quadratic for-
mula.

(c) If launched from the roof, find the
time required for the drone to hit the
ground by completing the square.

(d) Based on your solution to parts (a)
through (c), determine the maximum
height of the drone and sketch the
height h(t).

Figure P2.7 Quadcopter drone.

2-8. The energy dissipated by a resistor shown
in Fig. P2.8 varies with time t in seconds
according to the quadratic equation W =
3t2 + 6t. Solve for t if
(a) W = 3 J
(b) W = 9 J
(c) W = 45 J

v(t) R = 3 Ω  

i(t)

+
−

Figure P2.8 Resistive circuit for problem P2-8.

2-9. A river runs beneath a bridge shown
in Fig. P2.9 with an opening that is
parabolic in shape that is defined by

h(x) = −1
9
(x2 − 110x + 2575) ft, where

the origin is located on the bottom-left
corner of the bridge.

(a) Determine the location where the
bridge has a height of h(x) = 25 ft by
factoring.

(b) Determine the width of the open-
ing under the bridge (i.e., set h(x) = 0
and find the difference) by complet-
ing the square.

(c) Based on your answers from part
(a) or (b), determine the maximum
height of the bridge.

(d) Plot the parabola h(x) and clearly
label your answers from parts (a) to
(c). Would a ship that is 30 ft wide and
20 ft tall fit underneath the bridge?

Figure P2.9 Parabolic bridge.

2-10. The equivalent capacitance Ceq of two
capacitors connected in series as shown in
Fig. P2.10 is given by

Ceq =
C1 C2

C1 + C2
. (2.59)

If the total capacitance is Ceq = 75 𝜇F
and C2 = C1 + 200 𝜇F, find C1 and C2 as
follows:
(a) Substitute the values of Ceq and C2

in equation (2.59) and obtain the
quadratic equation for C1.

(b) Solve the quadratic equation for C1
obtained in part (a) by each of the
following methods: factoring, com-
pleting the square, and the quadratic
formula. Also, compute the corre-
sponding values of C2.

C1 C2 Ceq 

Figure P2.10 Series combination of two capacitors.
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2-11. The equivalent capacitance Ceq of three
capacitors connected in series–parallel as
shown in Fig. P2.11 is given by

Ceq = C3 +
C1 C2

C1 + C2
.

(a) Suppose Ceq = 40 𝜇F, C2 = C1 −
30 𝜇F, and C3 = 20 𝜇F, substitute
these values in the above equation
to obtain a quadratic equation for
C1.

(b) Solve the quadratic equation
obtained in part (a) by each of the
following methods: factoring, com-
pleting the square, and the quadratic
formula.

(c) Do both answers from part (b) yield a
physically meaningful solution? Why
or why not?

C1 C2

Ceq

C3

Figure P2.11 Series–parallel combination of two
capacitors.

2-12. The equivalent inductance L of two
inductors connected in parallel as shown
in Fig. P2.12 is given by

L =
L1 L2

L1 + L2
. (2.60)

If the total inductance L = 80 mH and
L1 = L2 + 300 mH, find L1 and L2 as fol-
lows:
(a) Substitute the values of L and L1

in equation (2.60) and obtain the
quadratic equation for L2.

(b) Solve the quadratic equation for L2
obtained in part (a) by completing
the square and the quadratic for-
mula. Also, compute the correspond-
ing values of L1.

L1 L2 L

Figure P2.12 Parallel combination of two
inductors.

2-13. Consider the parallel–series configura-
tion of springs shown in Fig. P2.13. The
equivalent stiffness of this configuration

is given by keq =
k1(k1 + k2)

2k1 + k2
.

(a) Suppose k2 = 3(k1 + 100) N/m and
the equivalent stiffness is keq =
100 N/m. Substitute these values
into the above equation to obtain
the quadratic equation k2

1
− 50k1 −

7500 = 0.
(b) Solve the quadratic equation

obtained in part (a) for k1 by each
of the following methods: quadratic
formula and completing the square.

(c) Given your answers from part (b),
determine the corresponding values
of k2. Do all answers from part (b)
yield a physically meaningful solu-
tion? Why or why not?

k1

k2

k1

Figure P2.13 Parallel–series configuration of three
springs.

2-14. The equivalent inductance L of three
inductors connected in series–parallel as
shown in Fig. P2.14 is given by

L = 125 +
L1 L2

L1 + L2
. (2.61)

(a) Suppose L2 = L1 + 200 mH and that
the equivalent inductance is L =
200 mH. Substitute these values in
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equation (2.61) and obtain the fol-
lowing quadratic equation:

L2
1 + 50 L1 − 15, 000 = 0. (2.62)

(b) Solve the quadratic equation (2.62)
for L1 by each of the following meth-
ods: factoring, completing the square,
and the quadratic formula.

125 mH

L1 L2 L

Figure P2.14 Series–parallel combination of three
inductors.

2-15. A model rocket is launched in the verti-
cal plane at time t = 0 s as shown in Fig.
P2.15. The height of the rocket (in feet)
satisfies the quadratic equation h(t) =
128 t − 16 t2.
(a) Find the value(s) of the time t when

h(t) = 192 ft.
(b) Find the time required for the rocket

to hit the ground.
(c) Based on your solutions in parts (a)

and (b), determine the maximum
height of the rocket and sketch the
height h(t).

h(t) 

Figure P2.15 A model rocket for problem P2-15.

2-16. The ball shown in Fig. P2.16 is dropped
from a height of 1000 m. The ball
falls according to the quadratic equation
h(t) = 1000 − 4.905t2. Find the time t in
seconds for the ball to reach a height
h(t) of
(a) 921.52 m
(b) 686.08 m
(c) 509.5 m
(d) 0 m

1000 m
h(t)

Figure P2.16 A ball dropped from a height of
1000 m.

2-17. In fluid mechanics, the boundary layer
velocity profile for constant pressure
shown in Fig. P2.17 is represented by

a quadratic equation u
U

= 2
(y
𝛿

)
−
(y
𝛿

)2

for 0 ≤ y ≤ 𝛿, where U is the incoming
flow velocity, 𝛿 is the boundary layer
thickness, and u is the fluid velocity at
height y. This equation is commonly writ-
ten in terms of the dimensionless relative
velocity (ur) and relative height (yr) as
ur = 2yr − y2

r , where 0 ≤ yr ≤ 1.
(a) Determine the value of yr corre-

sponding to ur = 1 by factoring.
(b) Determine the value of yr cor-

responding to ur = 0.75 by the
quadratic formula.

(c) Determine the value of yr corre-
sponding to ur = 0.99 by completing
the square.

(d) Given that the equation has a domain
0 ≤ yr ≤ 1, for what values of (yr, ur)
are your answers from parts (a) to (c)
valid?
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y

x

u(y)

U

δ

Figure P2.17 Boundary layer velocity profile for
constant pressure.

2-18. Two springs connected in series shown in
Fig. P2.18 can be represented by a sin-
gle equivalent spring. The stiffness of the
equivalent spring is given by

keq =
k1k2

k1 + k2
, (2.63)

where k1 and k2 are the spring constants
of the two springs. If keq = 1.2 N/m and
k2 = 2k1 − 1 N/m, find k1 and k2 as fol-
lows:
(a) Substitute the values of keq and k2

in equation (2.63) and obtain the
quadratic equation for k1.

(b) Solve the quadratic equation for k1
obtained in part (a) by completing
the square and the quadratic for-
mula. Also, compute the correspond-
ing values of k2.

k1 k2

Figure P2.18 Series combination of two springs.

2-19. An assembly of springs shown in Fig.
P2.19 has equivalent stiffness keq = k1 +

k1k2

k1 + k2
.

(a) Suppose that k2 = 3k1 + 10 N/m and
that the equivalent stiffness is keq =
45 N/m. Substitute these values into
above equation to obtain a quadratic
equation for k1.

(b) Solve the quadratic equation
obtained in part (a) by both the

quadratic formula and completing
the square. Determine the corre-
sponding values of both k1 and k2.

k1

k1 k2

Figure P2.19 Series–parallel combination of three
springs.

2-20. An assembly of three springs connected
in series as shown in Fig. P2.20 has an
equivalent stiffness k given by

k =
k1 k2 k3

k2 k3 + k1 k3 + k1 k2
. (2.64)

k1

k2

k3

k

Figure P2.20 Series combination of three springs.

(a) Suppose k2 = 6 lb/in., k3 = k1 + 8
lb/in., and the equivalent stiffness is
k = 2 lb/in. Substitute these values
into equation (2.64) to obtain the fol-
lowing quadratic equation:

4 k2
1 + 8 k1 − 96 = 0. (2.65)

(b) Solve equation (2.65) for k1 by each
of the following methods: (i) fac-
toring, (ii) quadratic formula, and
(iii) completing the square. For each
case, determine the value of k3 cor-
responding to the only physical solu-
tion for k1.
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2-21. Consider an inductor L and a capacitor
C connected in series as shown in Fig.
P2.21. The total reactance X is given by

X = 𝜔L − 1
𝜔C

, where 𝜔 is the angular
frequency in rad/s.
(a) Suppose L = 500 mH and C =

25, 000𝜇F. If the total reactance is
X = 8.0Ω, show that the angular
frequency 𝜔 satisfies the quadratic
equation 𝜔2 − 16𝜔 − 80 = 0.

(b) Solve the quadratic equation in part
(a) for 𝜔 by each of the following
methods: factoring, completing the
square, and the quadratic formula.

(c) Based on your answers to (b), at
what 𝜔 value would the vertex of the
parabola lie?

CL

Figure P2.21 Inductor and capacitor in series.

2-22. Consider a capacitor C and an inductor
L connected in parallel, as shown in Fig.
P2.22. The total reactance X in ohms is
given by X = 𝜔L

1 − 𝜔2 LC
, where 𝜔 is the

angular frequency in rad/s.
(a) Suppose L = 1.0 mH and C = 1 F.

If the total reactance is X = −1.0 Ω,
show that the angular frequency 𝜔

satisfies the quadratic equation 𝜔2 −
𝜔 − 1000 = 0.

(b) Solve the quadratic equation for 𝜔

by the methods of completing the
square and the quadratic formula.

CL

Figure P2.22 Parallel connection of L and C.

2-23. Consider a resistor R, an inductor L,
and a capacitor C connected in series as
shown in Fig. P2.23. The magnitude of
the total impedance Z is given by Z =√

R2 +
(
𝜔L − 1

𝜔C

)2

, where 𝜔 is the

angular frequency in rad/s.
(a) Suppose R = 400Ω, L = 100 mH,

and C = 1𝜇F. If the magnitude of
the total impedance is Z = 500 Ω,
show that the angular frequency
𝜔 satisfies the quadratic equation
𝜔2 ± 3, 000𝜔 − 10, 000, 000 = 0. Note
that due to the ± sign, there are
4 mathematical solutions for 𝜔,
although only 2 are physically pos-
sible (𝜔 ≥ 0).

(b) Solve the quadratic equation in part
(a) for 𝜔 by each of the following
methods: factoring, completing the
square, and the quadratic formula.

L CR

Figure P2.23 Resistor, inductor, and capacitor in
series.

2-24. When converting resistances connected
in a Δ formation to a Y formation as
shown in Fig. P2.24, the resistance R1 is
obtained as

R1 =
Ra Rb

Ra + Rb + Rc
. (2.66)

(a) Suppose R1 = 100, Ra = Rb = R,
and Rc = 100 + R, all measured in
ohms. Substitute these values into
equation (2.66) to obtain the follow-
ing quadratic equation for R:

R2 − 300 R − 10, 000 = 0.

(b) Solve the quadratic equation for R
by the methods of completing the
square and the quadratic formula.
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Ra
R1

R2 R3

Rb

Rc

a

cb

Figure P2.24 Delta to Y conversion circuit.

2-25. When converting resistances connected
in a Δ formation to a Y formation as
shown in Fig. P2.24, the resistance R1 is
given by equation (2.66).
(a) Suppose R1 = 500 Ω, Ra = 2 R, Rb =

4 R, and Rc = 200 + R, all measured
in ohms. Substitute these values into
equation (2.66) to obtain the follow-
ing quadratic equation for R:

4 R2 − 1750 R − 50, 000 = 0.

(b) Solve the quadratic equation for R
by the methods of completing the
square and the quadratic formula.

2-26. When converting resistances connected
in a Δ formation to a Y formation as
shown in Fig. P2.24, the resistance R2 is
obtained as

R2 =
Ra Rc

Ra + Rb + Rc
. (2.67)

(a) Suppose R2 = 12Ω, Ra = R, Rb =
3 R, and Rc = 100 + R, all measured
in ohms. Substitute these values into
equation (2.67) to obtain the follow-
ing quadratic equation for R:

R2 + 40 R − 1200 = 0.

(b) Solve the quadratic equation for R
by the methods of completing the
square and the quadratic formula.

2-27. When converting resistances connected
in a Δ formation to a Y formation as
shown in Fig. P2.24, the resistance R3 is
obtained as

R3 =
Rb Rc

Ra + Rb + Rc
. (2.68)

(a) Suppose R3 = 48Ω, Ra = R, Rb =
3 R, and Rc = 100 + R, all measured
in ohms. Substitute these values into
equation (2.68) to obtain the follow-
ing quadratic equation for R:

R2 + 20 R − 1600 = 0.

(b) Solve the quadratic equation for R
by the methods of completing the
square and the quadratic formula.

2-28. The characteristic equation of a series
RLC circuit shown in Fig. P2.28 is given
as

s2 + R
L

s + 1
L C

= 0. (2.69)

(a) If R = 7 Ω, L = 1 H, and C = 0.1 F,
solve the quadratic equation (2.69)
for the values of s (called the eigen-
values of the system) using the meth-
ods of completing the square and the
quadratic formula.

(b) Repeat part (a) if R = 10 Ω, L = 1 H,

and C = 1
25

F.

R

L−

+

i(t)

vc (0) 

t =  0

C

Figure P2.28 Series RLC circuit for problem
P2-28.

2-29. The characteristic equation of a parallel
RLC circuit shown in Fig. P2.29 is given
as

s2 + 1
R C

s + 1
L C

= 0. (2.70)

If R = 100 Ω, L = 25 mH, and C = 0.5𝜇F,
solve the quadratic equation (2.70) for
the values of s by the methods of complet-
ing the square and the quadratic formula.
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iL (0)

CL R v(t)

−

+

t = 0

Figure P2.29 Parallel RLC circuit for problem
P2-29.

2-30. The characteristic equation of a mass,
spring, and damper system shown in Fig.
P2.30 is given by

m s2 + c s + k = 0. (2.71)

(a) If m = 1 kg, c = 3 N-s/m, and k =
2 N/m, solve the quadratic equation
(2.71) for the values of s using the
methods of completing the square
and the quadratic formula.

(b) Repeat part (a) if m = 1 kg, c = 2
N-s/m, and k = 1 N/m.

c

x (displacement)

f (force)

k

m

Figure P2.30 Mass, spring, and damper system for
problem P2-30.

2-31. The perimeter of a rectangle shown in
Fig. P2.31 is given by

P = 2
(A

L
+ L

)
. (2.72)

If the perimeter P = 28 m and the area
A = W × L = 40 m2, find the length L and
width W as follows:
(a) Substitute the values of P and A

in equation (2.72) and obtain the
quadratic equation for L.

(b) Solve the quadratic equation for
L obtained in part (a) by factor-
ing, completing the square, and the
quadratic formula. Also, compute
the corresponding values of W.

Perimeter = 28 m

Area = 40 m2

W

L

Figure P2.31 A rectangle of length L and width W.

2-32. A diver jumps off a diving board 2.0 m
above the water with an initial vertical
velocity of 0.981 m/s as shown in Fig.
P2.32. The height h(t) above the water is
given by

h(t) = −4.905 t2 + 0.981t + 2.0 m.

(a) Find the time in seconds when the
diver hits the water. Use both the
quadratic formula and completing
the square.

(b) Find the maximum height of the
diver if it is known to occur at
t = 0.1 s.

(c) Use the results of parts (a) and (b) to
sketch the height h(t) of the diver.

vo = 0.981 m/s

h(t) = 2.0

h(t) = 0

2.0 m

Figure P2.32 Diver jumping off a diving board.

2-33. A level pipeline is required to pass
through a hill having a parabolic profile

y = − 0.004 x2 + 0.3 x. (2.73)

The origin of the x- and y-coordinates is
fixed at elevation zero near the base of
the hill, as shown in Fig. P2.33.
(a) Write the quadratic equation for a

pipeline elevation of y = 2.5 m.
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0
x, m 

y, m

B A2.5
Pipeline path

Tunnel
entry

Tunnel
Hill profile

exit

xA xB

Figure P2.33 Pipeline path through a parabolic
hill.

(b) Solve the quadratic equation found
in part (a) to determine the positions
of the tunnel entry xA and exit xB
using both the quadratic formula and
completing the square.

(c) Find the length of the tunnel opening.

2-34. A research group is using a drop test to
measure the force of attenuation of a hel-
met liner they designed to reduce the
occurrence of brain injuries for soldiers
and athletes. The helmet attached to a
weight is propelled downward with an ini-
tial velocity vi of 3 m/s from an initial
height of 30 m. The behavior of the falling
helmet is characterized by a quadratic
equation h(t) = 30 − 3 t − 4.9 t2.
(a) Write the quadratic equation for time

t when the helmet and weight hit the
ground, i.e., h(t) = 0 m.

(b) Solve the quadratic equation for t
obtained in part (a) by completing
the square, and the quadratic for-
mula.

2-35. The modulus of elasticity E is a measure
of a material’s resistance to deformation;
the larger the modulus, the stiffer the
material. During fabrication of a ceramic
material from a powder form, pores were
generated that affect the stiffness of the
material. The modulus of elasticity is
related to volume fraction porosity P by

E = 304 (1 − 1.9 P + 0.9 P2),

where E is measured in GPa.
(a) If a porous sample of silicon nitride

has a modulus of elasticity of E = 150
GPa, obtain the quadratic equation
for volume fraction porosity P.

(b) Solve the quadratic equation found
in part (a) using both the methods
of completing the square and the
quadratic formula.

(c) Repeat parts (a) and (b) to find the
volume fraction porosity of a sili-
con nitride sample with a modulus of
elasticity of 50 GPa.

2-36. Consider the following reaction having
an equilibrium constant of 4.66 × 10−3 at
a certain temperature:

A(g) + B(g)⇌ 2 C(g)

If 0.300 mol of A and 0.100 mol of B are
mixed in 1 L container and allowed to
reach equilibrium, the concentrations of
A = 0.300 − x and B = 0.100 − x reaction
that form the concentration of C = 2x are
related to the equilibrium constant by the
expression

4.66 × 10−3 = (2 x)2

(0.300 − x) (0.100 − x)
,

where x is the change in concentration.
(a) Write the quadratic equation for x.
(b) Solve the quadratic equation found

in part (a) by completing the square
and the quadratic formula. Note that
the value of x cannot be negative.

(c) Find the equilibrium concentration
of A, B, and C.

2-37. Consider the following reaction having
an equilibrium constant of 9.00 at 25∘C
temperature:

CO(g) + H2O(g) ⇌ CO2(g) + H2(g)

Suppose the feed to a 1 L reactor con-
tains 1.000 mol of CO(g) and 1.000 mol of
H2O(g), and the reaction mixture comes
to equilibrium at 25∘C . The concentra-
tions of CO(g) = 1.000 −x and H2O(g)=
1.000 −x reaction that form the concen-
tration of CO2(g) = 1 + x and H2 (g)= 1 +
x are related to the equilibrium constant
by the expression

9.00 = (1 + x) (1 + x)
(1 − x) (1 − x)

,

where x is the change in concentration
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(a) Write the quadratic equation for x.
(b) Solve the quadratic equation found

in part (a) by completing the square
and the quadratic formula. Note that
the change in concentration x cannot
be greater than the original concen-
tration.

(c) Find the equilibrium concentration
of CO(g), H2O(g), CO2(g), and
H2(g).

2-38. An engineering intern wants to hire an
asphalt contractor to widen the truck
entrance to the corporate headquarters
as shown in Fig. P2.38.

h New asphalt

b

Figure P2.38 New asphalt dimensions of the
corporate headquarter driveway.

The height h is required to be 10 ft more
than the width b, and the total area of the
new asphalt is given by

A = 1
2

b(10 + b). (2.74)

(a) If A = 200 sq ft, obtain the quadratic
equation for b.

(b) Solve the quadratic equation found
in part (a) by completing the square
and the quadratic formula.

(c) Find the dimensions of the width and
height.

2-39. A company is trying to determine the
optimal sale price, p, for its new widget
to maximize profits (in US dollars). It is
known that the total sales can be esti-
mated by S(p) = 51000p − 150p2 (USD),
and the total costs can be estimated by
C(p) = 6, 500, 000 − 19, 000p (USD).

(a) If the profit is G(p) = S(p) − C(p),
substitute S(p) and C(p) in the above
equations to determine the profit
G(p). Express your result for G(p) in
the standard form a x2 + b x + c.

(b) Determine the sale price(s) p that
would result in zero profit (G(p) = 0)
by both the quadratic formula and
completing the square.

(c) Using your results from part (b),
determine the price that would result
in maximum profit, and calculate the
corresponding maximum profit.

(d) Use your results from parts (a) to
(c) to plot the total profits G(p).
Clearly label the price correspond-
ing to the maximum profit on your
graph.

2-40. A city wants to hire a contractor to build
a walkway around the swimming pool in
one of its parks. The dimensions of the
walkway along with the dimensions of the
pool are shown in Fig. P2.40. The area of
the walkway is given by

A = (50 + 5 x)(30 + 2 x) − 1500.

(a) If A = 4500 sq ft, obtain the quadratic
equation for x.

(b) Solve the quadratic equation found
in part (a) by completing the square
and the quadratic formula.

W
al

kw
ay

30 ft

50 ft4x

x

x

x

30 + 2x

50 + 5x

Swimming pool

Walkway

Walkway

Walkway

Figure P2.40 Walkway around the swimming pool.
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Trigonometry in
Engineering

CHAPTER
3

3.1 INTRODUCTION

In this chapter, the direct (forward) and inverse (reverse) kinematics of one-link
and two-link planar robots are considered to explain the trigonometric functions and
their identities. Kinematics is the branch of mechanics that studies the motion of an
object. The direct or forward kinematics is the static geometric problem of deter-
mining the position and orientation of the end-effector (hand) of the robot from the
knowledge of the joint displacement. In general, the joint displacement can be linear
or rotational (angular). But in this chapter, only rotational motion is considered. Fur-
thermore, it is assumed that the planar robot is wristless (i.e., it has no end-effector
or hand) and that only the position but not the orientation of the tip of the robot can
be changed.

Going in the other direction, the inverse or reverse kinematics is the problem of
determining all possible joint variables (angles) that lead to the given Cartesian posi-
tion and orientation of the end-effector. Since no end-effector is considered in this
chapter, the inverse kinematics will determine the joint angle(s) from the Cartesian
position of the tip.

3.2 ONE-LINK PLANAR ROBOT

Consider a one-link planar robot of length l (Fig. 3.1) that is being rotated in the
x–y plane by a motor mounted at the center of the table, which is also the location
of the robot’s joint. The robot has a position sensor installed at the joint that gives
the value of the angle 𝜃 of the robot measured from the positive x-axis. The angle 𝜃

is positive in the counterclockwise direction (0∘ to 180∘) and it is negative in the
clockwise direction (0∘ to −180∘). Therefore, as the joint rotates from 0∘ to 180∘ and
0∘ to −180∘, the tip of the robot moves on a circle of radius l (the length of the link
of the robot) as shown in Fig. 3.2. Note that 180∘ = 𝜋 radians.

3.2.1 Kinematics of One-Link Robot

In Fig. 3.2, the point P (tip of the robot) can be represented in rectangular or Carte-
sian coordinates by a pair (x, y) or in polar coordinates by the pair (l, 𝜃). Assuming

61
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x

Motor

P(x, y)

x

y

Link

l

y

θ

Figure 3.1 One-link planar robot.

that the length of the link l is fixed, a change in the angle 𝜃 of the robot changes the
position of the tip of the robot. This is known as the direct or forward kinematics of
the robot. The position of the tip of the robot (x, y) in terms of l and 𝜃 can be found
using the right-angled triangle OAP in Fig. 3.2 as

cos(𝜃) =
Adjacent side
Hypotenuse

= x
l

⇒ x = l cos(𝜃) (3.1)

sin(𝜃) =
Opposite side
Hypotenuse

=
y
l

⇒ y = l sin(𝜃) (3.2)

O

l

B

Ax

yy
(counterclockwise direction)

(clockwise direction)

Hypotenuse

x

y

P(x, y)

Opposite side

Adjacent side

θ

Positive θ

0 ≤    ≤ 180θ

Negative θ

− 180 ≤    ≤ 0 θ

Figure 3.2 Circular path of the one-link robot tip.
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Example
3-1

Use the one-link robot to find the values of cos(𝜃) and sin(𝜃) for 𝜃 = 0∘, 90∘, −90∘,
and 180∘. Also, find the values of x and y.

Solution Case I: 𝜃 = 0∘

By inspection,

x = l cos(0∘) = l ⇒ cos(0∘) = 1

y = l sin(0∘) = 0 ⇒ sin(0∘) = 0

x

y

O l P

= 0°θ

Case II: 𝜃 = 90∘

By inspection,

x = l cos(90∘) = 0 ⇒ cos(90∘) = 0

y = l sin(90∘) = l ⇒ sin(90∘) = 1 O

l

P

x

y

   = 90°θ

Case III: 𝜃 = −90∘

By inspection,

x = l cos(−90∘) = 0 ⇒ cos(−90∘) = 0

y = l sin(−90∘) = −l ⇒ sin(−90∘) = −1 O

l

P

x

y

   = −90°θ

Case IV: 𝜃 = 180∘

By inspection,

x = l cos(180∘) = −l ⇒ cos(180∘) = −1

y = l sin(180∘) = 0 ⇒ sin(180∘) = 0 OlP
x

y

   = 180°θ
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Example
3-2

Find the position P(x, y) of the robot for 𝜃 = 45∘, −45∘, 135∘, and −135∘.

Solution Case I: 𝜃 = 45∘

x = l cos(45∘) = l√
2

⇒ cos(45∘) = 1√
2

y = l sin(45∘) = l√
2

⇒ sin(45∘) = 1√
2 O

45°

l

P(x, y)

x

y

y =

x = l

2

l

2

√⎯

√⎯

Case II: 𝜃 = −45∘

x = l cos(−45∘) = l√
2

⇒ cos(−45∘) = 1√
2

y = l sin(−45∘) = − l√
2

⇒ sin(−45∘) = − 1√
2

O

l

x

y

P(x, y)

y = −

x =

−45°

l

2

l

2

√⎯

√⎯

Case III: 𝜃 = 135∘

x = l cos(135∘) = − l√
2

⇒ cos(135∘) = − 1√
2

y = l sin(135∘) = l√
2

⇒ sin(135∘) = 1√
2 O

l

y

P(x, y)

x

135°
45°

x = −

y = l

2

l

2

√⎯

√⎯
Case IV: 𝜃 = −135∘

x = l cos(−135∘) = − l√
2

⇒ cos(−135∘) = − 1√
2

y = l sin(−135∘) = − l√
2

⇒ sin(−135∘) = − 1√
2

O

l

x

y

P(x, y)

45°

−135°

x = −

y = −

l

2

l

2

√⎯

√⎯
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Examples 3-1 and 3-2 show that in the first quadrant (0∘ < 𝜃 < 90∘), both the sin
and cos functions are positive. Since the other trigonometric functions (tan = sin/cos,
cot = 1/tan, sec = 1/cos and csc = 1/sin, for example) are functions of sin and cos func-
tions, all the trigonometric functions are positive in the first quadrant, as shown in
Fig. 3.3. In the second quadrant, sin and csc are positive and all the rest of the trigono-
metric functions are negative. In the third quadrant, both the sin and cos functions are
negative. Therefore, only the tan and cot are positive. Finally, in the fourth quadrant,
only the cos and sec are positive. To remember this, one of the phrases commonly
used is “All Sin Tan Cos.” Another is “All Students Take Calculus,” which is certainly
true of engineering students!

(all trigonometric functions are positive)

2nd Quadrant

3rd Quadrant 4th Quadrant

x

y

sin   +ve
cos   −ve

(sin is positive)

1st Quadrant
sin     +ve
cos    +ve

(tan is positive) (cos is positive)

sin     −ve
cos    −ve

sin    −ve
cos    +ve

Figure 3.3 Trigonometric functions in the four quadrants.

The values of sin and cos functions for 𝜃 = 0∘, 30∘, 45∘, 60∘, and 90∘ are given in
Table 3.1. The values of sin and cos functions for many other angles can be found
using Table 3.1, as explained in the following examples.

TABLE 3.1 Values of sine and cosine functions for common angles.

Angle

deg 0∘ 30∘ 45∘ 60∘ 90∘

(rad) (0) (𝜋
6

) (𝜋
4

) (𝜋
3

) (𝜋
2

)

sin
√

0
4
= 0

√
1
4
= 1

2

√
2
4
= 1√

2

√
3
4
=

√
3

2

√
4
4
= 1

cos
√

4
4
= 1

√
3
4
=

√
3

2

√
2
4
= 1√

2

√
1
4
= 1

2

√
0
4
= 0
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Example
3-3

Find sin 𝜃 and cos 𝜃 for 𝜃 = 120∘. Also, find the position of the tip of the one-link
robot for this angle.

Solution The position of the tip of the robot for 𝜃 = 120∘ is shown in Fig. 3.4.

x

120°

x

y

60°

P(x, y)

Reference angle

l

y

Figure 3.4 One-link planar robot with an angle of 120∘.

Note that the point P is in the second quadrant, and, therefore, sin(120∘) should
have positive value and cos(120∘) should be negative. Their values can be found
using the reference angle of 𝜃 = 120∘, which, in this case, is 60∘. The reference
angle is always positive, and it is the acute angle formed between the x-axis and
the terminal side of the angle (120∘ in this case).

If the angle 𝜃 is in the first quadrant, the reference angle is the same as the
angle 𝜃. If the angle 𝜃 is in the second quadrant, the reference angle is 180∘ − 𝜃

(𝜋 − 𝜃, if the angle is in radians). If the angle 𝜃 is in the third quadrant, the reference
angle is 𝜃 + 180∘. However, if the angle 𝜃 is in the fourth quadrant, the reference
angle is the absolute value of 𝜃. Therefore, the values of sin(120∘) and cos(120∘)
can be written as

x = l cos(120∘) = −l cos(60∘) = − l
2

y = l sin(120∘) = l sin(60∘) =
√

3
2

l.

Note that cos(120∘) = −cos(60∘) = − 1
2

and sin(120∘) = sin(60∘) =
√

3
2

. The values
of sin(120∘) and cos(120∘) can also be found using the trigonometric identities

sin(A ± B) = sin(A) cos(B) ± cos(A) sin(B)

cos(A ± B) = cos(A) cos(B) ∓ sin(A) sin(B).
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Therefore,
sin(120∘) = sin(90∘ + 30∘)

= sin(90∘) cos(30∘) + cos(90∘) sin(30∘)

= (1)

(√
3

2

)
+ (0)

(
1
2

)

=
√

3
2and

cos(120∘) = cos(90∘ + 30∘)

= cos(90∘) cos(30∘) − sin(90∘) sin(30∘)

= (0)

(√
3

2

)
− (1)

(
1
2

)

= −1
2
.

Therefore, the position of the tip of the one-link robot if 𝜃 = 120∘ is given by

(x, y) =
(

−l
2
,

√
3 l
2

)
.

Example
3-4

Find the position of the tip of the one-link robot for 𝜃 = 225∘ = −135∘.

Solution The position of the tip of the robot for 𝜃 = 225∘ is shown in Fig. 3.5.

45°
−135°

O

y

x
225°

l

y

P(x, y)

x

Reference angle

Figure 3.5 One-link planar robot with an angle of 225∘.

x = l cos(−135∘) = −l cos(45∘) = − l√
2

y = l sin(−135∘) = − l sin(45∘) = − l√
2

(x, y) =

(
− l√

2
, − l√

2

)
.
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Example
3-5

Find the position of the tip of the one-link robot for 𝜃 = 390∘.

Solution The position of the tip of the robot for 𝜃 = 390∘ is shown in Fig. 3.6.

O

P(x, y)

y

x 

Reference angle
l

30°
x

y

390°

Figure 3.6 One-link planar robot with an angle of 390∘.

x = l cos(390∘) = l cos(30∘) =
√

3 l
2

y = l sin(390∘) = l sin(30∘) = l
2

(x, y) =

(√
3 l
2

,
l
2

)
.

Example
3-6

Find the position of the tip of the one-link robot for 𝜃 = −510∘.

Solution The position of the tip of the robot for 𝜃 = −510∘ is shown in Fig. 3.7.

P(x, y)

O

−510°

30°

Reference angle

x 

l
y

x

y

Figure 3.7 One-link planar robot with an angle of −510∘.
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x = l cos(−510∘) = −l cos(30∘) = −
√

3 l
2

y = l sin(−510∘) = −l sin(30∘) = − l
2

(x, y) =

(
−
√

3 l
2

, − l
2

)
.

3.2.2 Inverse Kinematics of One-Link Robot

In order to move the tip of the robot to a given position P(x, y), it is required to
find the joint angle 𝜃 by which the motor needs to move. This is called the inverse
problem; for example, given x and y, find the angle 𝜃 and length l. Equations (3.1)
and (3.2) give the relationship between the tip position and the angle 𝜃. Squaring
and adding x and y in these equations gives

x2 + y2 = (l cos 𝜃)2 + (l sin 𝜃)2

= l2 (sin2
𝜃 + cos2𝜃).

Using the trigonometric identity sin2
𝜃 + cos2𝜃 = 1,

x2 + y2 = l2.

Therefore, l = ±
√

x2 + y2. Since the distance cannot be negative, l =
√

x2 + y2. Now
dividing y in (3.2) by x in (3.1),

y
x
= l sin𝜃

l cos𝜃
= tan(𝜃). (3.3)

Therefore, the angle 𝜃 can be determined from the position of the tip of the robot
using equation (3.3) as

𝜃 = tan−1
(y

x

)
= atan

(y
x

)
. (3.4)

In equation (3.4), y is divided by x before the inverse tangent (arctangent or atan)
is calculated, and, therefore,

(
y
x

)
is either positive or negative. If

(
y
x

)
is positive,

the angle obtained from the atan function is between 0 and 90∘ (first quadrant) and
if
(

y
x

)
is negative, the angle obtained from the atan function is between 0 and −90∘

(fourth quadrant). This is why the atan function is called the two-quadrant arctangent
function. However, if both x and y are negative (third quadrant), or x is negative
and y is positive (second quadrant), the angles obtained from the atan function will
be wrong since the angles should lie in the third or second quadrant, respectively.
Therefore, it is important to keep track of the signs of x and y. This can be done by
locating the point P in the proper quadrant or using the four-quadrant arctangent
function (atan2) as explained in the following examples.
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Example
3-7

Find l and 𝜃 for the following points (x, y):

Solution Case I: (x, y) = (1, 0)

By inspection, l = 1 and 𝜃 = 0∘.

Also, l =
√

x2 + y2 =
√

12 + 02 = 1,

𝜃 = tan−1
(

0
1

)
= tan−1(0) = 0∘. (1, 0)

y

l
x

O

Case II: (x, y) = (0, 1)

By inspection, l = 1 and 𝜃 = 90∘.

Also, l =
√

x2 + y2 =
√

02 + 12 = 1,

𝜃 = tan−1
(

1
0

)
= tan−1(∞) = 90∘.

(0, 1)

y

l

x
O

Case III: (x, y) = (0,−1)

By inspection, l = 1 and 𝜃 = −90∘.

Also, l =
√

x2 + y2 =
√

02 + (−1)2 = 1,

𝜃 = tan−1(−1
0
) = tan−1(−∞) = −90∘.

(0, −1)

y

l

x
O

Case IV: (x, y) = (−1, 0)

By inspection, l = 1 and 𝜃 = 180∘.

Also, l =
√

x2 + y2 =
√
(−1)2 + 02 = 1,

𝜃 = tan−1
(

0
−1

)
= tan−1(−0) = 180∘. (−1, 0)

y

l
x

O
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But a calculator will give an answer of 0∘. For this case, the calculator answer must
be adjusted as explained in example 3-10.

Example
3-8

Find the values of l and 𝜃 if (x, y) =
(

1√
2
,

1√
2

)
.

l =
√

x2 + y2 =
√

( 1√
2
)2 + ( 1√

2
)2 = 1,

𝜃 = tan−1
⎛⎜⎜⎝

1√
2

1√
2

⎞⎟⎟⎠ = tan−1(1) = 45∘.

l

x

y

O

,

l

2

l

2

l

2

l

2

θ

)( √⎯ √⎯

√⎯

√⎯

Example
3-9

Find the values of l and 𝜃 if (x, y) =
(

1√
2
, − 1√

2

)
.

l =
√

x2 + y2 =
√

( 1√
2
)2 + (− 1√

2
)2 = 1,

𝜃 = tan−1
⎛⎜⎜⎝
− 1√

2

1√
2

⎞⎟⎟⎠ = tan−1(−1) = −45∘.
l

O

y

x

−

−, )

l

2

l

2

l

2

l

2

θ

(

√⎯

√⎯

√⎯ √⎯

Example
3-10

Find the values of l and 𝜃 if (x, y) =
(
− 1√

2
, − 1√

2

)
.

l =
√

x2 + y2 =
√

(− 1√
2
)2 + (− 1√

2
)2 = 1,

𝜃 = tan−1
⎛⎜⎜⎝
− 1√

2

− 1√
2

⎞⎟⎟⎠ = tan−1(1) = 45∘.
l

y

x
O

45°−

,

1

2

1

21

2

− 1

2

− 1

2
− 1

2

θ

)( √⎯ √⎯

√⎯
√⎯

√⎯

√⎯
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The answer 𝜃 = 45∘ obtained in example 3-10 is incorrect, and it is the same value

obtained in example 3-8 where (x, y) =
(

1√
2
,

1√
2

)
. Remember that the calculator

function tan−1
(

y
x

)
always returns a value in the range of −90∘ ≤ 𝜃 ≤ 90∘. To obtain

the correct answer, it is best to find the quadrant the point lies in and then correct the
problem accordingly. Since, in this case, the point lies in the third quadrant, the angle
should lie between −90∘ and −180∘. The correct answer, therefore, can be obtained
by subtracting 180∘ from the angle obtained using tan−1

(
y
x

)
. The other method is to

obtain the reference angle and then add the reference angle to −180∘. Therefore, the
correct answer is 𝜃 = 45∘ − 180∘ = −135∘.

The correct answer can also be obtained using the atan2(y, x) function. The
atan2(y, x) function computes the tan−1

(
y
x

)
function but uses the sign of both x and

y to determine the quadrant in which the resulting angle lies. The atan2(y, x) function
is sometimes called a four-quadrant arctangent function and returns a value in the
range −𝜋 ≤ 𝜃 ≤ 𝜋 (−180∘ ≤ 𝜃 ≤ 180∘). Most of the programming languages including
MATLAB have the atan2(y, x) function predefined in their libraries. (Note that the
atan2 function requires both x and y values separately instead of

(
y
x

)
.) Therefore,

using MATLAB gives

atan2

(
− 1√

2
,− 1√

2

)
= −2.3562 rad

= −135∘. (3.5)

Example
3-11

Find the values of l and 𝜃 if (x, y) = (−0.5, 0.25).

l =
√

x2 + y2 =
√
(−0.5)2 + (0.25)2 = 0.559.

Using your calculator,

𝜃 = tan−1

(
0.25
− 0.5

)
= tan−1(−0.5) = −26.57∘. −0.5

0.25
l

(−0.5, 0.25)

Reference angle

y

x
O

−26.57°
26.57°

θ

The answer 𝜃 = −26.57∘ obtained in example 3-11 is clearly incorrect. The correct
angle can be obtained using one of the following three methods.

Method 1: Obtain the reference angle and then subtract the reference angle
from 180∘.

𝜃 = 180∘ − reference angle

= 180∘ − tan−1
(

0.25
0.5

)
= 180∘ − 26.57∘

= 153.4∘. (3.6)
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Method 2: Use the tan−1
(

y
x

)
function and add 180∘ to the result.

𝜃 = 180∘ + tan−1
(y

x

)
= 180∘ + tan−1

(
0.25
−0.5

)
= 180∘ + (−26.57∘)

= 153.4∘. (3.7)

Method 3: Use the atan2(y, x) function in MATLAB.

𝜃 = atan2(0.25, −0.5)

= 2.6779 rad

= (2.6779 rad)
(

180∘
𝜋 rad

)
= 153.4∘. (3.8)

3.3 TWO-LINK PLANAR ROBOT

Figure 3.8 shows a two-link planar robot moving in the x–y plane. The upper arm of
length l1 is rotated by the shoulder motor, and the lower arm of length l2 is rotated
by the elbow motor. Position sensors are installed at the joints that give the value of
the angle 𝜃1 measured from the positive real axis (x-axis) to the upper arm, and the
relative angle 𝜃2 measured from the upper arm to the lower arm of the robot. These
angles are positive in the counterclockwise direction and negative in the clockwise
direction. In this section, both the direct and inverse kinematics of the two-link robot
are derived.

Shoulder motor (Joint 1)

P(x, y)

l2

Lower arm

l1

x

y

Elbow motor (Joint 2)

Tip
Upper arm

1θ

2θ

Figure 3.8 Two-link planar robot.
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3.3.1 Direct Kinematics of Two-Link Robot

The direct kinematics of the two-link planar robot is the problem of finding the posi-
tion of the tip of the robot P(x, y) if the joint angles 𝜃1 and 𝜃2 are known. As illustrated
in Figs. 3.8 and 3.9,

x = x1 + x2 (3.9)

y = y1 + y2. (3.10)

From the right-angled triangle OAP1,

x1 = l1 cos 𝜃1 (3.11)

y1 = l1 sin 𝜃1. (3.12)

Similarly, using the right-angled triangle P1BP,

x2 = l2 cos(𝜃1 + 𝜃2) (3.13)

y2 = l2 sin(𝜃1 + 𝜃2). (3.14)

l2

l1

y

y
y2

y1

x1
x2

P1 B

A

x

O
x

P(x, y)

1θ

1θ
1θ

2θ 2θ+

Figure 3.9 Two-link planar robot.

Substituting equations (3.11) and (3.13) into equation (3.9) gives

x = l1 cos 𝜃1 + l2 cos(𝜃1 + 𝜃2). (3.15)

Similarly, substituting equations (3.12) and (3.14) into equation (3.10) yields

y = l1 sin 𝜃1 + l2 sin(𝜃1 + 𝜃2). (3.16)

Equations (3.15) and (3.16) give the position of the tip of the robot in terms of joint
angles 𝜃1 and 𝜃2.
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Example
3-12

Find the position, P(x, y), of the tip of the robot for the following configurations.
Also, sketch the orientation of the robot in the x–y plane.

Solution Case I: 𝜃1 = 𝜃2 = 0∘

By inspection:

x = l1 + l2 and y = 0.

Using equations (3.15) and (3.16):

x = l1 cos(0∘) + l2 cos(0∘ + 0∘) = l1 + l2

y = l1 sin(0∘) + l2 sin(0∘ + 0∘) = 0.

O

P(x, y)

l1 l2
x

x = l1 + l2

y

Case II: 𝜃1 = 180∘, 𝜃2 = 0∘

By inspection:

x = −(l1 + l2) and y = 0.

Using equations (3.15) and (3.16):

x = l1 cos(180∘) + l2 cos(180∘ + 0∘)
= l1(−1) + l2(−1) = −(l1 + l2)

y = l1 sin(180∘) + l2 sin(180∘ + 0∘) = l1(0) + l2(0) = 0.

O

P(x, y)

l2 l1
x

x = −(l1 + l2)

y

Case III: 𝜃1 = 90∘, 𝜃2 = −90∘

By inspection:

x = l2 and y = l1.

Using equations (3.15) and (3.16):

x = l1 cos(90∘) + l2 cos(90∘ − 90∘) = l1(0) + l2(1) = l2

y = l1sin(90∘) + l2 sin(90∘ − 90∘)) = l1(1) + l2(0) = l1.
O

P(x, y)

l1
l2

x

y

−90°

90°

Case IV: 𝜃1 = 45∘, 𝜃2 = −45∘

Using equations (3.15) and (3.16):

x = l1 cos(45∘) + l2 cos(45∘ − 45∘)

= l1

(
1√
2

)
+ l2(1) =

l1√
2
+ l2

y = l1 sin(45∘) + l2 sin(45∘ − 45∘)

= l1

(
1√
2

)
+ l2(0) =

l1√
2
.

O

P(x, y)l1 l2
x

y

−45°

45°
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3.3.2 Inverse Kinematics of Two-Link Robot

The inverse kinematics of the two-link planar robot is the problem of finding the
joint angles 𝜃1 and 𝜃2 if the position of the tip of the robot P(x, y) is known. This
problem can be solved using a geometric solution or an algebraic solution. In this
chapter, only the algebraic solution will be carried out.

Example
3-13

Find the joint angles 𝜃1 and 𝜃2 if the position of the tip of the robot is given by
P(x, y) = (12, 6) as shown in Fig. 3.10. Assume l1 = l2 = 5

√
2.

1

l2

P1

6

O

5

5

P(12, 6)

x

y

2

2
θ

2θ
√⎯

√⎯

Figure 3.10 Two-link configuration to find 𝜃1 and 𝜃2.

Solution In the algebraic solution, the joint angles 𝜃1 and 𝜃2 are determined using the Pascal
laws of cosines and sines. The Pascal law of cosines can be used to find the unknown
angles of a triangle if the three sides of the triangle are known. For example, if the
three sides of the triangle shown in Fig. 3.11 are known, the unknown angle 𝛾 can
be found using the law of cosines as

a2 = b2 + c2 − 2 b c cos 𝛾 (3.17)

or
cos 𝛾 = b2 + c2 − a2

2 b c
.

a

b

c

γ
α

Figure 3.11 A triangle with an unknown angle and three known sides.
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Similarly, if the two sides (a and c) and the angle (𝛾) of the triangle shown in Fig.
3.11 are known, the unknown angle 𝛼 can be found using the law of sines as

sin 𝛼

c
= sin 𝛾

a
or

sin 𝛼 = c
a

sin 𝛾. (3.18)

Note that there are always two positive values of 𝛼 that satisfy equation (3.18),
one corresponding to an acute angle in the first quadrant (𝛼 ≤ 90∘) and the other
corresponding to an obtuse angle in the second quadrant (𝛼 > 90∘), each having
the same reference angle. Thus, the two possible solutions for 𝛼 are

𝛼 =
⎧⎪⎨⎪⎩

sin−1
( c

a
sin(𝛾)

)
, if 𝛼 ≤ 90∘

180 − sin−1
( c

a
sin(𝛾)

)
, if 𝛼 > 90∘

(3.19)

As the value of 𝛼 is typically not known a priori, discretion must be used to deter-
mine which form of equation (3.19) to use. In the absence of a scale drawing clearly
indicating whether 𝛼 is an acute or obtuse angle, the law of cosines can always be
used to uniquely determine the value of 𝛼 in the range 0 ≤ 𝛼 ≤ 180∘ as

c2 = a2 + b2 − 2 a b cos 𝛼,

which gives

cos 𝛼 = a2 + b2 − c2

2ab
or

𝛼 = cos−1
(

a2 + b2 − c2

2ab

)
.

See example 3-16 for a detailed illustration of each method.

Solution for 𝜽2 In Fig. 3.10, the angle 𝜃2 can be obtained from triangle OPP1
formed by joining points O and P. In this triangle (Fig. 3.12), three sides are known
and one of the angles 180 − 𝜃2 is unknown. Applying the law of cosines to the tri-
angle OP1P gives

O

P(12, 6)

P1

12
2  + 6

2  =    1
80

6

12

180 − 

2
5

25

2θ2θ

√
⎯

√
⎯

√
⎯⎯⎯ √

⎯

Figure 3.12 Using the law of cosines to find 𝜃2.
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(
√

180)2 =
(

5
√

2
)2

+
(

5
√

2
)2

− 2
(

5
√

2
) (

5
√

2
)

cos(180∘ − 𝜃2)

180 = 50 + 50 − 100 cos(180∘ − 𝜃2)

80 = −100 cos(180∘ − 𝜃2)

−0.8 = cos(180∘ − 𝜃2). (3.20)

Since cos(180∘ − 𝜃2) = −cos 𝜃2, equation (3.20) can be written as cos 𝜃2 = 0.8. For
the positive value of cos 𝜃2, 𝜃2 lies either in the first or fourth quadrant based on
the values of sin 𝜃2 as shown in Fig. 3.13. If the value of sin 𝜃2 is positive, angle 𝜃2
is positive. However, if sin 𝜃2 is negative, angle 𝜃2 is negative.

0.6

−0.6

0.8
x

y

= −36.872θ

= 36.872θ

Figure 3.13 Two solutions of 𝜃2.

Therefore, there are two possible solutions of 𝜃2, 𝜃2 = 36.87∘ and 𝜃2 = −36.87∘. In
Fig. 3.14, the positive solution 𝜃2 = 36.87∘ is called the elbow-up solution and the
negative solution 𝜃2 = −36.87∘ is called the elbow-down solution.

12O

6

P(12, 6)

 = 36.87°

 = −36.87°

Elbow up

Elbow down

2θ

2θ

Figure 3.14 Elbow-up and elbow-down solutions of 𝜃2.

Elbow-Up Solution for 𝜃1 The angle 𝜃1 for the elbow-up solution is shown in
Fig. 3.15. The angle 𝜃1 + 𝛼 can be obtained from Fig. 3.15 as

tan(𝜃1 + 𝛼) = 6
12

𝜃1 + 𝛼 = tan−1
(

6
12

)
𝜃1 + 𝛼 = 26.57∘

𝜃1 = 26.57∘ − 𝛼. (3.21)
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6

P(12, 6)

P1

x

y

12

Elbow up

= 36.87°
143.13°

O

α

1θ

2θ

Figure 3.15 Elbow-up configuration to find angle 𝜃1.

The angle 𝛼 needed to find 𝜃1 in equation (3.21) can be obtained using the law of
sines or cosines from the triangle OP1P shown in Fig. 3.16. Using the law of sines
gives

sin 𝛼

5
√

2
= sin 143.13∘√

180
.

Therefore,

sin 𝛼 =
5
√

2√
180

sin 143.13∘

= 0.3164.

Since the robot is in the elbow-up configuration, the angle 𝛼 is positive. Therefore,

𝛼 = sin−1(0.3164)

𝛼 = 18.45∘.

P

P1

12
2  + 6

2

180

2
5

25

143.13°

O

α√
⎯⎯⎯⎯ √

⎯⎯

=

√
⎯

√
⎯

Figure 3.16 Elbow-up configuration to find angle 𝛼.

Substituting 𝛼 = 18.45∘ into equation (3.21) yields

𝜃1 = 26.57 − 18.45 = 8.12∘.

Therefore, the inverse kinematic solution for the tip position P(12, 6) when the
elbow is up is given by

𝜃1 = 8.12∘ and 𝜃2 = 36.87∘.
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Elbow-Down Solution for 𝜃1 The angle 𝜃1 for the elbow-down solution is shown
in Fig. 3.17. The angle 𝜃1 − 𝛼 can be obtained from Fig. 3.17 as

tan(𝜃1 − 𝛼) = 6
12

𝜃1 − 𝛼 = tan−1
(

6
12

)
𝜃1 − 𝛼 = 26.57∘

𝜃1 = 26.57∘ + 𝛼. (3.22)

O

6

P1

x

y

P(12, 6)

Elbow down

12

= 36.87°

143.13°

α

1θ

2θ

Figure 3.17 Elbow-down configuration to find angle 𝜃1.

The angle 𝛼 needed to find 𝜃1 in equation (3.22) can be obtained using either the
law of sines or cosines for the triangle OP1P shown in Fig. 3.18. Using the law of
cosines gives(

5
√

2
)2

=
(

5
√

2
)2

+
(√

180
)2

− 2
(

5
√

2
) (√

180
)

cos 𝛼.

Therefore,

0 = 180 − 2
(

5
√

2
) (√

180
)

cos 𝛼

cos 𝛼 = 180

2 ×
√

180 × 5
√

2

cos 𝛼 = 0.9487

𝛼 = cos−1(0.9487)

𝛼 = 18.43∘.

P
P1

O

2
5

25

143.13°

12
2  + 6

2  =
180

α√
⎯

√
⎯

√
⎯⎯⎯⎯ √

⎯⎯

Figure 3.18 Elbow-down configuration to find angle 𝛼.
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Substituting 𝛼 = 18.43∘ into equation (3.22) yields

𝜃1 = 26.57 + 18.43 = 45∘.

Therefore, the inverse kinematic solution for the tip position P(12, 6) when the
elbow is down is given by

𝜃1 = 45∘ and 𝜃2 = −36.87∘.

3.3.3 Further Examples of Two-Link Planar Robot

Example
3-14

Consider a two-link planar robot, with positive orientations of 𝜃1 and 𝜃2 as shown
in Fig. 3.19.

(a) Suppose 𝜃1 = 2 𝜋

3
rad, 𝜃2 = 5 𝜋

6
rad, l1 = 10 in., and l2 = 12 in. Sketch the orien-

tation of the robot in the x–y plane, and determine the x- and y-coordinates of
point P(x, y).

(b) Suppose now that the same robot is located in the first quadrant and oriented
in the elbow-up position, as shown in Fig. 3.19. If the tip of the robot is located
at the point P(x, y) = (12, 16), determine the values of 𝜃1 and 𝜃2.

y

O

l2

l1

P(x, y)

P1

x1θ

2θ

Figure 3.19 Two-link planar robot for example 3-14.

Solution (a) The orientation of the two-link robot for 𝜃1 = 2 𝜋

3
rad = 120∘, 𝜃2 = 5 𝜋

6
rad =

150∘, l1 = 10 in., and l2 = 12 in. is shown in Fig. 3.20. The x- and y-coordinates
of the tip position are given by

x = l1 cos 𝜃1 + l2 cos(𝜃1 + 𝜃2)

= 10 cos(120∘) + 12 cos(270∘)

= 10
(
−1

2

)
+ 12 (0)

= −5 in.
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y = l1 sin 𝜃1 + l2 sin(𝜃1 + 𝜃2)

= 10 sin(120∘) + 12 sin(270∘)

= 10

(√
3

2

)
+ 12 (−1)

= = −3.34 in. (3.23)

Therefore, P(x, y) = (−5 in.,−3.34 in.).

O

10
12

P(x, y) = (−5, −3.34)

P1

x, in.

y, in.

2 = 150°θ

1 = 120°θ

Figure 3.20 Orientation of the two-link planar robot for 𝜃1 = 120∘ and 𝜃2 = 150∘.

(b) For the two-link robot located in the first quadrant as shown in Fig. 3.19, the
angle 𝜃2 can be found using the law of cosines on the triangle OP1P shown
in Fig. 3.21. The unknown angle 180∘ − 𝜃2 and the three sides of the triangle
OP1P are shown in Fig. 3.21. Using the law of cosines gives

202 = 102 + 122 − 2(10)(12) cos(180∘ − 𝜃2)

400 = 244 + 240 cos 𝜃2

156 = 240 cos 𝜃2 ⇒ cos 𝜃2 = 0.65. (3.24)

Since the robot is in the elbow-up configuration, the angle 𝜃2 is positive and
is given by 𝜃2 = cos−1(0.65) = 49.46∘. Also, from Fig. 3.21, the angle 𝜃1 + 𝛼 can
be determined using the right-angled triangle OAP as

tan(𝜃1 + 𝛼) = 16
12

⇒ 𝜃1 = tan−1
(

16
12

)
− 𝛼.

Therefore,
𝜃1 = 53.13∘ − 𝛼. (3.25)
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O

1

P(x, y) = (12, 16)

P1

12

12

10

A

16
12

2  + 16
2  = 20

α
180 −   2

   θ

θ

√
⎯⎯⎯⎯⎯⎯

Figure 3.21 The triangle OP1P to find the angles 𝜃1 and 𝜃2.

The angle 𝛼 can be found from the triangle OP1P using either the law of
cosines or the law of sines. Using the law of sines gives

sin 𝛼

12
=

sin(180∘ − 𝜃2)
20

.

Therefore,

sin 𝛼 = 12
20

sin(180∘ − 49.46∘)

= 0.4560

𝛼 = sin−1(0.4560)

𝛼 = 27.13∘.

Substituting 𝛼 = 27.13∘ in equation (3.25) yields

𝜃1 = 53.13 − 27.13 = 26.0∘.

Example
3-15

Consider a two-link planar robot with positive orientations of 𝜃1 and 𝜃2 as shown
in Fig. 3.19. Suppose 𝜃1 = 120∘, 𝜃2 = −30∘, l1 = 8 cm, and l2 = 4 cm.

(a) Sketch the orientation of the robot in the x–y plane.

(b) Determine the x- and y-coordinates of point P(x, y).
(c) Determine the distance from point P to the origin.

Solution (a) The orientation of the two-link robot for 𝜃1 = 120∘, 𝜃2 = −30∘, l1 = 8 cm, and
l2 = 4 cm is shown in Fig. 3.22.
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30°

120°

8

4

P(x, y)

P1

x, cm

y, cm

O

Figure 3.22 Orientation of the two-link planar robot for 𝜃1 = 120∘ and 𝜃2 = −30∘.

(b) The x- and y-coordinates of the tip position are given by

x = l1 cos 𝜃1 + l2 cos(𝜃1 + 𝜃2)

= 8 cos(120∘) + 4 cos(90∘)

= 8
(
−1

2

)
+ 4 (0)

= −4 cm.

y = l1 sin 𝜃1 + l2 sin(𝜃1 + 𝜃2)

= 8 sin(120∘) + 4 sin(90∘)

= 8

(√
3

2

)
+ 4 (1)

= 10.93 cm.

Therefore, P(x, y) = (−4 cm, 10.93 cm).

(c) The distance from the tip P(x, y) to the origin is given by

d =
√

x2 + y2

=
√
(−4)2 + (10.93)2

= 11.64 cm.

Therefore, the distance from the tip of the robot to the origin is 11.64 cm.
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Example
3-16

Consider the tip of a robot with arm lengths l1 = 14 mm and l2 = 20 mm located in
the second quadrant and oriented in the elbow-up position as shown in Fig. 3.23.
If the tip of the robot is located at the point P(x, y) = (−8, 5) mm, determine the
values of 𝜃1 and 𝜃2.

O

y, mm

x, mm

P (–8, 5)

20

14

1θ

2θ

Figure 3.23 Two-link planar robot in the elbow-up position with P(x, y) = (−8 mm, 5 mm).

Solution (a) The angle 𝜃2 can be found using the law of cosines on the triangle OP1P in
Fig. 3.24. The unknown angle 180∘ − 𝜃2 and the three sides of the triangle OP1P
are shown in Fig. 3.24. Using the law of cosines gives

(9.434)2 = 142 + 202 − 2(14)(20) cos(180∘ − 𝜃2)

89.0 = 596 + 560 cos 𝜃2

−507 = 560 cos 𝜃2 ⇒ cos 𝜃2 = −0.9054.

O

y, mm

x, mm

P (–8, 5)

A

P120
180 −

14

1θ

2θ

2θ

α
(–8) 2 + 5 2 = 9.434

√ ⎯⎯⎯⎯

Figure 3.24 The triangle OP1P to find the angles 𝜃1 and 𝜃2.
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Since the robot is in the elbow-up configuration, angle 𝜃2 is positive and is
given by 𝜃2 = cos−1(−0.9054) = 154.9∘. Also, from Fig. 3.24, the angle 𝜃1 + 𝛼

can be determined using the right-angled triangle OAP as

𝜃1 + 𝛼 = 180∘ − tan−1
(

5
8

)
= 180∘ − 32∘

= 148.0∘.

Therefore,
𝜃1 = 148.0∘ − 𝛼. (3.26)

The angle 𝛼 can be found from the triangle OP1P using either the law of
cosines or the law of sines. Using the law of sines gives

sin(𝛼)
20

=
sin(180∘ − 𝜃2)

9.434

sin(𝛼) = 20
9.434

sin(25.13∘)

sin(𝛼) = 0.900.

Following equation (3.19), either 𝛼 = sin−1(0.900) = 64.2∘ or 𝛼 = 180∘ −
sin−1(0.900) = 115.8∘. Assuming Fig. 3.24 is drawn to scale, 𝛼 appears to be
obtuse. As such, 𝛼 = 115.8∘ is the correct answer. Alternatively, using the law
of cosines gives

202 = (9.434)2 + 142 − 2(9.434)(14) cos(𝛼)

115 = −264.15 cos(𝛼)

−0.4354 = cos(𝛼).

Thus, 𝛼 = cos−1(−0.4354) = 115.8∘. Finally, substituting 𝛼 = 115.8∘ in equation
(3.26) yields

𝜃1 = 148∘ − 115.8∘ = 32.2∘.

Example
3-17

Consider a two-link planar robot with positive orientations of 𝜃1 and 𝜃2 as shown
in Fig. 3.19.

(a) Suppose 𝜃1 = −135∘, 𝜃2 = −45∘, and l1 = l2 = 10 in. Sketch the orientation
of the robot in the x–y plane, and determine the x- and y-coordinates of
point P(x, y).

(b) Suppose now that the tip of same robot is located in the third quadrant and ori-
ented in the elbow-down position (clockwise direction), as shown in Fig. 3.25.
If the tip of the robot is located at point P(x, y) = (−17.07 in.,−7.07 in.), deter-
mine the values of 𝜃1 and 𝜃2.
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−17.07

10

P(x, y)
10 P1

−7.07

x, in.

y, in.

O

1θ

2θ

Figure 3.25 Two-link planar robot in the elbow-down position with
P(x, y) = (−17.07 in.,−7.07 in.).

Solution (a) The orientation of the two-link robot for 𝜃1 = −135∘, 𝜃2 = −45∘, and l1 = l2 =
10 in. is shown in Fig. 3.26. The x- and y-coordinates of the tip position are
given by

x = l1 cos 𝜃1 + l2 cos(𝜃1 + 𝜃2)

= 10 cos(−135∘) + 10 cos(−180∘)

= 10

(
−
√

2
2

)
+ 10 (−1)

= −17.07 in.

y = l1 sin 𝜃1 + l2 sin(𝜃1 + 𝜃2)

= 10 sin(−135∘) + 10 sin(−180∘)

= 10

(
−
√

2
2

)
+ 10(0)

= −7.07 in.

Therefore, P(x, y) = (−17.07 in.,−7.07 in.).

P1P(x, y)

10

10

x, in.

y, in.

−135°

−45°

O

Figure 3.26 The orientation of the two-link planar robot with 𝜃1 = −135∘ and 𝜃2 = −45∘.
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(b) The angle 𝜃2 can be found using the law of cosines on the triangle OP1P shown
in Fig. 3.27. The unknown angle 180∘ − 𝜃2 and the three sides of the triangle
OP1P are shown in Fig. 3.27. Using the law of cosines gives

(18.48)2 = 102 + 102 − 2(10)(10) cos(180∘ − 𝜃2)

341.4 = 200 + 200 cos 𝜃2

141.4 = 200 cos 𝜃2 ⇒ cos𝜃2 = 0.707.

Therefore, 𝜃2 = cos−1(0.707) = 45.0∘ or − 45∘. Since the angle 𝜃2 is in the clock-
wise direction, 𝜃2 = −45∘. Also, from Fig. 3.27, the angle 𝜃1 + 𝛼 can be deter-
mined using the right-angled triangle OAP as

𝜃1 + 𝛼 = −180∘ + tan−1
( 7.07

17.07

)
= −180∘ + 22.5∘

= −157.5∘.

Therefore,
𝜃1 = −157.5∘ − 𝛼. (3.27)

O

−17.07

−7.07
P(x, y) 10

10

P1

A

y, in.

x, in.

(−17.07)2  + (−7.07)2  = 18.477

√
⎯⎯⎯⎯⎯⎯⎯⎯⎯

2θ
180 −

1θα

2θ

Figure 3.27 The triangle OP1P used to find the angles 𝜃1 and 𝜃2.

The angle 𝛼 can be found from the triangle OP1P using either the law of
cosines or the law of sines. Using the law of cosines yields

102 = (18.477)2 + 102 − 2(10)(18.477) cos 𝛼

−341.4 = −369.54 cos 𝛼

0.9239 = cos 𝛼.

Since angle 𝛼 is in the clockwise direction, 𝛼 = −22.5∘. Substituting 𝛼 = −22.5∘
in equation (3.27) gives

𝜃1 = −157.5∘ − (−22.5∘) = −135.0∘.

Therefore, 𝜃1 = −135∘.
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Example
3-18

Consider a two-link planar robot with positive orientations of 𝜃1 and 𝜃2 as shown
in Fig. 3.19.

(a) Suppose 𝜃1 = −45∘, 𝜃2 = 45∘, and l1 = l2 = 10 in. Sketch the orientation
of the robot in the x–y plane, and determine the x- and y-coordinates of
point P(x, y).

(b) Suppose now that the tip of same robot is located in the fourth quad-
rant and oriented in the elbow-up position (counterclockwise direction),
as shown in Fig. 3.28. If the tip of the robot is located at the point
P(x, y) = (17.07 in., −7.07 in.), determine the values of 𝜃1 and 𝜃2.

P1 10

17.07O

10

−7.07 P(x, y)

x, in.

y, in.

1θ

2θ

Figure 3.28 Two-link planar robot in the elbow-up position with
P(x, y) = (17.07 in., −7.07 in.).

Solution (a) The orientation of the two-link robot for 𝜃1 = −45∘, 𝜃2 = 45∘, and l1 = l2 =
10 in. is shown in Fig. 3.29. The x- and y-coordinates of the tip position are
given by

x = l1 cos 𝜃1 + l2 cos(𝜃1 + 𝜃2)

= 10 cos(−45∘) + 10 cos(0∘)

= 10

(√
2

2

)
+ 10(1)

= 17.07 in.

y = l1 sin 𝜃1 + l2 sin(𝜃1 + 𝜃2)

= 10 sin(−45∘) + 10 sin(0∘)

= 10

(
−
√

2
2

)
+ 10(0)

= −7.07 in.

Therefore, P(x, y) = (17.07 in., −7.07 in.).
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O

10

10
P(x, y)

P1

−45°

45°

x

y

y, in.

x, in.

Figure 3.29 The orientation of the two-link planar robot with 𝜃1 = −45∘ and 𝜃2 = 45∘.

(b) The angle 𝜃2 can be found using the law of cosines on the triangle OP1P shown
in Fig. 3.30. The unknown angle 180∘ − 𝜃2 and the three sides of the triangle
OP1P are shown in Fig. 3.30. Using the law of cosines gives

(18.48)2 = 102 + 102 − 2(10)(10) cos(180∘ − 𝜃2)
341.4 = 200 + 200 cos 𝜃2

141.4 = 200 cos 𝜃2 ⇒ cos𝜃2 = 0.707.

Since the robot is in the elbow-up configuration, angle 𝜃2 = cos−1(0.707) = 45∘.
Also, from Fig. 3.30, the angle 𝜃1 − 𝛼 can be determined using the right-angled
triangle OAP as

𝜃1 − 𝛼 = −tan−1
( 7.07

17.07

)
𝜃1 − 𝛼 = −22.5∘.

P(x, y)10

10

17.07

P1

O
A

y, in.

x, in.

−7.07

(17.07) 2 +2121 (−7.07) 2 = 18.48

1θ √ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
α

2θ

180 − 2θ

Figure 3.30 The triangle OP1P to find the angles 𝜃1 and 𝜃2.

Therefore,
𝜃1 = −22.5∘ + 𝛼. (3.28)
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The angle 𝛼 can be found from the triangle OP1P using either the law of
cosines or the law of sines. Using the law of cosines yields

102 = (18.48)2 + 102 − 2(10)(18.48) cos 𝛼

−341.4 = −369.5 cos 𝛼

0.9239 = cos 𝛼.

Since angle 𝛼 is in the clockwise direction, 𝛼 = −22.5∘. Substituting 𝛼 = −22.5∘
in equation (3.28) gives

𝜃1 = −22.5 + (−22.5)∘ = −45.0∘.

Therefore, 𝜃1 = −45∘.

3.4 FURTHER EXAMPLES OF TRIGONOMETRY
IN ENGINEERING

Example
3-19

A one-link planar robot of length l = 1.5 m is moving in the x-y plane. If the joint
angle 𝜃 = −165∘, locate the tip P(x, y) of the robot in the x–y plane.

Solution The tip of the one-link robot for 𝜃 = −165∘ is shown in Fig. 3.31. It can be seen
from this figure that the tip is located in the third quadrant and the reference angle
is 15∘. Since both the sin and cos functions are negative in the third quadrant, the
position P(x, y) of the tip is given by

x = 1.5 cos(165∘) = −1.5 cos(15∘) = −1.5 × 0.9659 = −1.449 m
y = 1.5 sin(165∘) = −1.5 sin(15∘) = −1.5 × 0.2588 = −0.388 m.

1.5 m 

x

y

−165°

P(x, y)

Figure 3.31 One-link planar robot for example 3-19.

Example
3-20

The x- and y-components of the tip of a one-link planar robot are given as −10 cm
and 5 cm, respectively. Locate the tip of the robot in the x–y plane. Also, find the
length l of the link and the angle 𝜃.
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Solution The tip of the one-link robot with x = −10 cm and y = 5 cm is shown in Fig. 3.32.
The length l is given by

l =
√
(−10)2 + (5)2 =

√
100 + 25 =

√
125 = 11.18 cm.

5 cm

O
x

y

l

−10.0 cm

P(x, y)

θ

Figure 3.32 One-link planar robot for example 3-20.

Since the tip of the robot is in the second quadrant, the angle 𝜃 is given by

𝜃 = 180∘ − tan−1
(

5
10

)
= 180∘ − tan−1(0.5)

= 180∘ − 26.57∘

= 153.4∘.

Using the atan2(y, x) function in MATLAB, the angle 𝜃 is given by

𝜃 = atan2(5,−10)

= 2.6779 rad

= (2.6779 rad)
(

180∘
𝜋 rad

)
= 153.4∘.

Example
3-21

In example 1-8, the civil engineer calculated the elevation of the building corner-
stone located between two benchmarks shown in Fig. 1.19. The same engineer is
now required to calculate the angle of inclination and horizontal distance between
the two benchmarks, as shown in Fig. 3.33.

B1
x, m

y, m

476.8

428.4

Δy

Δx

L

B2

θ

Figure 3.33 Elevation between the two benchmarks.
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The distance L between the two benchmarks B1 and B2 is 1001.2 m, and their
elevations are 428.4 m and 476.8 m, respectively.

(a) Find the angle of inclination 𝜃 of the grade. Also, calculate the percent

grade,
Δy
Δx

× 100.

(b) Calculate the horizontal distance between the two benchmarks.

(c) Check the results of part (b) using the Pythagorean theorem.

Solution (a) The angle of inclination 𝜃 can be determined from the right-angled triangle
shown in Fig. 3.33 as

sin 𝜃 =
Δy
L

=
E2 − E1

L

= 476.8 − 428.4
1001.2

= 0.0483.

Therefore, the angle of inclination 𝜃 = sin−1 (0.0483) = 2.768∘. The percent
grade can now be calculated as

Percent grade =
Δy
Δx

× 100

= 100 × tan 𝜃

= 100 × tan(2.768∘)

= 4.84 %.

(b) The horizontal distance between the two benchmarks can be calculated as

Δx = L cos𝜃

= (1001.2) cos(2.468∘)

= (1001.2) (0.99883)

= 1000.0 m. (3.29)

(c) The horizontal distance can also be calculated using the Pythagorean
theorem as

Δx =
√

L2 − Δy2

=
√
(1001.2)2 − (48.4)2

= 1000 m.
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Example
3-22

Consider the position of the toes of a person sitting in a chair, as shown in
Fig. 3.34.

P(x, y)

x, in.

y, in.

l1

l1

l2

1θ

2θ

Figure 3.34 Toes position of a person sitting on a chair.

(a) Suppose 𝜃1 = −30∘, 𝜃2 = 45∘, l1 = 20 in., and l2 = 5 in. Determine the x- and
y-coordinates of the position of the toes P(x, y).

(b) Now suppose that the same leg is positioned such that the tip of the toes is
located in the first quadrant and oriented in the ankle-up position (counter-
clockwise direction) as shown Fig. 3.35. If the end of the toes is located at
P(x, y) = (19.5 in., 2.5 in.), determine the values of 𝜃1 and 𝜃2.

P(19.5, 2.5)

5
20

x

y

O 1θ
2θ

Figure 3.35 Ankle-up position.

Solution (a) The x- and y-coordinates of the toes position can be calculated as

x = l1 cos 𝜃1 + l2 cos(𝜃1 + 𝜃2)

= 20 cos(−30∘) + 5 cos(−30∘ + 45∘)

= 20

(√
3

2

)
+ 5(0.9659)

= 22.15 in.

y = l1 sin 𝜃1 + l2 sin(𝜃1 + 𝜃2)

= 20 sin(−30∘) + 5 sin(−30∘ + 45∘)
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= 20
(
−1

2

)
+ 5(0.2588)

= −18.71 in.

Therefore, P(x, y) = (22.15 in., −18.71 in.).
(b) The angle 𝜃2 can be found using the law of cosines on the triangle OP1P shown

in Fig. 3.36. The unknown angle 180∘ − 𝜃2 and the three sides of the triangle
OP1P are shown in Fig. 3.36. Using the law of cosines gives

(19.66)2 = 202 + 52 − 2(20)(5) cos(180∘ − 𝜃2)

386.5 = 425 − 200 cos(180∘ − 𝜃2)

−38.5 = −200 cos(180∘ − 𝜃2) ⇒ cos(180∘ − 𝜃2) = 0.1925.

x

y

180 −

A

5

     P(19.5, 2.5) 

20

(19.5)2 + (2.5)2 = 19.66

P1

O
α

1θ

√
⎯⎯⎯⎯⎯⎯

2θ

2θ

Figure 3.36 The triangle OP1P to find the angles 𝜃1 and 𝜃2.

Since the leg is in the ankle-up configuration, (180∘ − 𝜃2) = cos−1(0.1925) =
78.9∘. Therefore, 𝜃2 = 101.1∘. Also, from Fig. 3.36, the angle 𝜃1 + 𝛼 can be
determined from the triangle OP1P using either the law of cosines or the law
of sines. Using the law of sines yields

sin(𝜃1 + 𝛼)
5

=
sin(180∘ − 𝜃2)

19.66
.

Therefore,
sin(𝜃1 + 𝛼) = 5

19.66
sin 78.9∘

𝜃1 + 𝛼 = 14.45∘. (3.30)

The angle 𝛼 can be found from the right triangle OAP shown in Fig. 3.36 as

𝛼 = tan−1
(

2.5
19.5

)
= 7.31∘.

Substituting the value of 𝛼 in equation (3.30) gives

𝜃1 = 14.45 − 𝛼

= 14.45∘ − 7.31∘

or 𝜃1 = 7.14∘.
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Example
3-23

In a motion capture study of a runner, one frame shows the subject supporting
her weight on one leg, as shown in Fig. 3.37. The length of the foot segment
(from ankle to toe) is 7.9 in. and the length of the lower leg (from ankle to knee)
is 17.1 in.

(a) Given the angles shown in Fig. 3.37, find the position of the knee if the runner’s
toes touch the ground at the point x = y = 0.

Toes

Ankle

x

82.4°

37.2°

y
Knee

Figure 3.37 Position of the runner’s leg during motion capture study.

(b) Now suppose that the same leg is positioned such that the knee is located in the
second quadrant and oriented in the knee-down position (clockwise direction)
as shown Fig. 3.38. If the end of the toes is located at P(x, y) = (−4 in., 24 in.),
determine the values of 𝜃1 and 𝜃2.

y, in.

(−4, 24)

Ankle

Toes

Knee

x, in.
1θ

2θ

Figure 3.38 Position of the runner’s leg to find 𝜃1 and 𝜃2.
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Solution (a) Using the angles 𝜃1 and 𝜃2 shown in Fig. 3.39, the x- and y-coordinates of the
knee position are calculated as

x = l1 cos 𝜃1 + l2 cos(𝜃1 + 𝜃2)

= 7.9 cos(142.8∘) + 17.1 cos(142.8∘ − 97.6∘)

= 7.9 (−0.7965) + 17.1(0.7046)

= 5.76 in.

y = l1 sin 𝜃1 + l2 sin(𝜃1 + 𝜃2)

= 7.9 sin(142.8∘) + 17.1 sin(142.8∘ − 97.6∘)

= 7.9 (0.6046) + 17.1(0.7096)

= 16.9 in.

Therefore, P(x, y) = (5.76 in., 16.9 in.).

P(x, y)

17.1

37.2°

Ankle

Toes
x, in.

y, in.

82.4°

= 142.8°7.9

Knee

1θ

= −97.6°2θ

Figure 3.39 Angle 𝜃1 and 𝜃2 to find the position of the knee.

(b) The angle 𝜃2 can be found using the law of cosines on the triangle TAK shown
in Fig. 3.40. The unknown angle 180∘ − 𝜃2 and the three sides of the triangle
TAK are shown in Fig. 3.40. Using the law of cosines gives

(24.33)2 = 7.92 + 17.12 − 2(7.9)(17.1) cos(180∘ − 𝜃2)

592 = 425 − 270.18 cos(180∘ − 𝜃2)

167 = 270.18 cos(𝜃2) ⇒ cos(𝜃2) = 0.6181 ⇒ 𝜃2 = 51.82∘.
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P
−4 T

17.1

x, in.

K(−4, 24)

24.33

24

A
7.9

y, in.

  

α
β

1θ

180 −  2θ
2θ

Figure 3.40 The triangle TAK to find the angles 𝜃2.

Also from Fig. 3.40, the angle 𝛼 can be determined from the triangle TAK using
either the law of cosines or the law of sines. Using the law of sines yields

sin(𝛼)
17.1

=
sin(180∘ − 𝜃2)

24.33
.

Therefore,
sin(𝛼) = 17.1

24.33
sin 129.2∘,

which gives
𝛼 = 33∘.

The angle 𝛽 can be found from the right triangle TPK shown in Fig. 3.40 as

𝛽 = 180∘ − tan−1
(24

4

)
⇒ 𝛽 = 99.46∘.

Angle 𝜃1 can now be found by adding angles 𝛼 and 𝛽 as shown in Fig. 3.40 as

𝜃1 = 𝛼 + 𝛽

= 51.82∘ + 99.46∘

= 151.28∘.

Therefore, 𝜃1 = 151.8∘. Also, since the robot is in the knee-down configuration,
the angle 𝜃2 = −51.82∘.



Trim Size: 8in x 10in Rattan2e c03.tex V1 - 02/17/2021 6:35pm Page 99�

� �

�

Problems 99

PROBLEMS

3-1. A laser range finder records the distance
from the laser to the base and from the
laser to the top of a building as shown in
Fig. P3.1. Find the angle 𝜃 and the height
of the building.

h

60 m
Range finder

100 m

θ

Figure P3.1 Using a range finder to find the height
of a building.

3-2. The eyes of a 7 ft 4 in. player are 82 in.
from the floor, as shown in Fig. P3.2.
If the height of the basketball hoop is
10 ft from the floor, find the distance l
and angle 𝜃 from the player’s eye to the
hoop.

l

10 ft

82 in.

156 in.

θ

Figure P3.2 A basketball player in front of the
basketball hoop.

3-3. Repeat problem P3-2 if the player’s eyes
are 70 in. from the floor.

3-4. To calculate the property tax, a city hires
an engineering intern to determine the
area of different lots in a new subdivi-
sion. The intern calculates the area of lot

1 shown in Fig. P3.4 as 94,640 m2. Is this
the correct answer? If not, find the cor-
rect answer.

Lot 1200 m

300 m

30°

Figure P3.4 Dimension of lot 1 in the new
subdivision.

3-5. The same engineering intern calculates
the area of lot 2 shown in Fig. P3.5 as
50,000 m2. Is this the correct answer? If
not, find the correct answer.

Lot 2225 m

325 m

120°

Figure P3.5 Dimension of lot 2 in the new
subdivision.

3-6. A laser beam is directed through a small
hole in the center of a circle of radius
1.73 m. The origin of the beam is 5 m
from the circle as shown in Fig. P3.6.
What should be the angle 𝜃 of the beam
for the beam to go through the hole?
Use the law of sines.

Laser
5 m

1.73

Beam

θ

Figure P3.6 Laser beam for problem P3-6.
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3-7. A truss structure consists of three
isosceles triangles as shown in Fig. P3.7.
Determine the angle 𝜃 using the laws of
cosines or sines.

70 cm

70 cm

70 cm

50 cm
50 cm50

 cm

50
 cmθ θ

Figure P3.7 Truss structure for problem P3-7.

3-8. A rocket takes off from a launch pad
located l = 500 m from the control tower
as shown in Fig. P3.8. If the control
tower is 15 m tall, determine the height
h of the rocket from the ground when it
is located at a distance d = 575 m from
the top of the control tower. Also, deter-
mine the angle 𝜃.

 l

h

15 m

Rocket

Control tower

Launch
pad

d

θ

Figure P3.8 A rocket taking off from a launch pad
for problem P3-8.

3-9. Repeat problem P3-8 if l = 400 m and
d = 500 m.

3-10. A one-link planar robot moves in the
x–y plane as shown in Fig. P3.10. For the
given l and 𝜃, find the position P(x, y) of
the tip.

y

x

P(x, y)

45°

1.5 m

Figure P3.10 A one-link planar robot for
problem P3-10.

3-11. A one-link planar robot moves in the
x–y plane as shown in Fig. P3.11. For the
given l and 𝜃, find the position P(x, y) of
the tip.

x

y

1.75 m

P(x, y)

135°

Figure P3.11 A one-link planar robot for
problem P3-11.

3-12. A one-link planar robot moves in the
x–y plane as shown in Fig. P3.12. For the
given l and 𝜃, find the position P(x, y) of
the tip.

1.5 m

P(x, y)

x

y

−45°

Figure P3.12 A one-link planar robot for
problem P3-12.

3-13. A one-link planar robot moves in the
x–y plane as shown in Fig. P3.13. For the
given l and 𝜃, find the position P(x, y) of
the tip.

y

P(x, y)

1.75 m −135°

x

Figure P3.13 A one-link planar robot for
problem P3-13.
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3-14. Consider the one-link planar robot
shown in Fig. P3.14. If l = 5 cm, sketch
the position of the tip of the robot and
determine the (x, y) coordinates of posi-
tion P for

(a) 𝜃 = 𝜋

4
rad

(b) 𝜃 = 3𝜋
4

rad

(c) 𝜃 = −135∘

(d) 𝜃 = −𝜋

4
rad

l

x

yy

P(x, y)

x

y

O

θ

Figure P3.14 A one-link planar robot for
problem P3-14.

3-15. Repeat problem P3-14 if l = 8 in. and
(a) 𝜃 = 150∘

(b) 𝜃 = −2𝜋
3

rad

(c) 𝜃 = 420∘

(d) 𝜃 = −9𝜋
4

rad

3-16. Consider again the one-link planar
robot shown in Fig. P3.14. Determine
the length l and angle 𝜃 if the tip of the
robot is located at the following points
P(x, y).
(a) P(x, y) = (3, 4) cm
(b) P(x, y) = (−4, 3) cm
(c) P(x, y) = (−3, −3) cm
(d) P(x, y) = (5, −4) cm

3-17. Repeat problem P3-16 if
(a) P(x, y) = (5,3) in.
(b) P(x, y) = (−3,5) in.

(c) P(x, y) = (−4, −6) in.
(d) P(x, y) = (5, −5) in.

3-18. Consider the two-link planar robot
shown in Fig. P3.18.

y

l1

l2

P(x, y)

x
O

1θ

2θ

Figure P3.18 A two-link planar robot for problem
P3-18.

Sketch the orientation of the robot
and determine the (x, y) coordinates of
point P for
(a) 𝜃1 = 30∘, 𝜃2 = 45∘, l1 = l2 = 5 cm
(b) 𝜃1 = 30∘, 𝜃2 = −45∘, l1 = l2 = 5 cm

(c) 𝜃1 = 3𝜋
4

rad, 𝜃2 = 𝜋

2
rad, l1 = l2 =

5 cm
(d) 𝜃1 = 3𝜋

4
rad, 𝜃2 = −𝜋

2
rad, l1 = l2 =

5 cm
(e) 𝜃1 = −30∘, 𝜃2 = 45∘, l1 = l2 = 5 cm
(f) 𝜃1 = −30∘, 𝜃2 = −45∘, l1 = l2 = 5

cm
(g) 𝜃1 = −3𝜋

4
rad, 𝜃2 = 𝜋

2
rad, l1 = l2 =

5 cm
(h) 𝜃1 = −3𝜋

4
rad, 𝜃2 = −𝜋

2
rad, l1 =

l2 = 5 cm

3-19. Suppose that the two-link planar robot
shown in Fig. P3.18 is located in the
first quadrant and is oriented in the
elbow-up position. If the tip of the
robot is located at the point P(x, y) =
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(18, 18), determine the values of 𝜃1 and
𝜃2. Assume l1 = 12 in. and l2 = 16 in.

3-20. Suppose that the two-link planar robot
shown in Fig. P3.18 is located in
the first quadrant and is oriented in
the elbow-down position. If the tip of
the robot is located at the point P(x, y)
= (10, 5), determine the values of 𝜃1 and
𝜃2. Assume l1 = 6 in. and l2 = 8 in.

3-21. Consider a two-link planar robot, with
positive orientations of 𝜃1 and 𝜃2 as
shown in Fig. P3.18.
(a) Suppose 𝜃1 = −30∘, 𝜃2 = 120∘, l1 =

5 in., and l2 = 3 in. Sketch the orien-
tation of the robot in the x–y plane,
and determine the x–y coordinates
of point P.

(b) Suppose now that the same robot is
located in the fourth quadrant and
is oriented in the “elbow-up” posi-
tion (i.e., with a positive value of 𝜃2).
If the tip of the robot is located
point at P(x, y) = (6,−4), determine
the values of 𝜃1 and 𝜃2 .

3-22. Consider the two-link planar robot
with l1 = l2 = 5 in. and oriented in the
elbow-down position as shown in Fig.
P3.22. If the tip of the robot is located at
the point P(x, y) = (4.83, −8.36), deter-
mine the values of 𝜃1 and 𝜃2.

O

5

y, in.

5

x, in.

P(4.83, −8.36)

1θ

2θ

Figure P3.22 A two-link planar robot for
problem P3-22.

3-23. Consider a two-link planar robot, with
positive orientations of 𝜃1 and 𝜃2 as
shown in Fig. P3.23.

θ2

θ1

O

P(−9, 1)

y, m

x, m

5
7

Figure P3.23 A two-link planar robot for
problem P3-23.

(a) Suppose 𝜃1 = −5𝜋
9
rad, 𝜃2 =

−13𝜋
18

rad, l1 = 5 m, and l2 = 7 m.
Sketch the orientation of the robot
in the x–y plane, and determine the
x–y coordinates of point P.

(b) Suppose now that the same robot
is located in the second quadrant
and is oriented in the “elbow-down”
position as shown in Fig. P3.23.
If the tip of the robot is located
at the point P(x, y) = (−9, 1), deter-
mine the values of 𝜃1 and 𝜃2

3-24. Consider a two-link planar robot with
l1 = l2 = 10 cm and oriented in the
elbow-up position as shown in Fig.
P3.24. If the tip of the robot is located at
the point P(x, y) = (−4.5,−16.73), deter-
mine the values of 𝜃1 and 𝜃2.

θ2

θ1

O

10

10

P(−4.5, −16.73)

y, cm

x, cm

Figure P3.24 A two-link planar robot for
problem P3-24.
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3-25. Consider a two-link planar robot, with
positive orientations of 𝜃1 and 𝜃2 as
shown in Fig. P3.18.
(a) Suppose 𝜃1 = 65∘, 𝜃2 = −165∘, l1 =

8 cm, and l2 = 4 cm. Sketch the ori-
entation of the robot in the x–y
plane, and determine the x–y coor-
dinates of point P.

(b) Suppose now that the same robot
has its tip located in the second
quadrant and is oriented in the
“elbow-down” position, as shown
in P3.25. If the tip of the robot is
located at point P(x, y) = (−6, 5) cm,
determine the values of 𝜃1 and 𝜃2.

θ2

θ1

O

4

8

P(−6, 5)
y, cm

x, cm

Figure P3.25 A two-link planar robot for
problem P3-25.

3-26. Consider a two-link planar robot ori-
ented in the elbow-down position as
shown in Fig. P3.26. If the tip of the
robot is located at the point P(x, y) =
(−1, 15), determine the values of 𝜃1 and
𝜃2. Assume l1 = 10 in. and l2 = 8 in.

θ2

θ1

O

10

8

P(−1, 15)

y, in.

x, in.

Figure P3.26 A two-link planar robot for
problem P3-26.

3-27. Consider a two-link planar robot, with
positive orientations of 𝜃1 and 𝜃2 as
shown in Fig. P3.18.
(a) Suppose 𝜃1 = −100∘, 𝜃2 = 210∘, l1 =

5 in., and l2 = 10 in. Sketch the ori-
entation of the robot in the x–y
plane, and determine the x–y coor-
dinates of point P.

(b) Suppose now that the same robot
has its tip located in the first
quadrant and is oriented in the
“elbow-up” position, as shown in
P3.27. If the tip of the robot is
located at point P(x, y) = (12, 2) in.,
determine the values of 𝜃1 and 𝜃2.

θ2

θ1

O

10
5

P(12, 2)y, in.

x, in.

Figure P3.27 A two-link planar robot for
problem P3-27.

3-28. An airplane travels at a heading of 60∘
northwest with an air speed of 500 mph
as shown in Fig. P3.28 . The wind is
blowing at 30∘ southwest at a speed
of 50 mph. Find the magnitude of the
velocity V and the angle 𝜃 of the plane
relative to the ground using the laws of
sines and cosines.

S

30°
E

60

500

50

θ

V

W

N

x

y

Figure P3.28 Velocity of an airplane for problem
P3-28.
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3-29. A large barge is crossing a river at a
heading of 30∘ northwest with a speed
of 12 mph against the water as shown
in Fig. P3.29. The river flows due east at
a speed of 4 mph. Find the magnitude
of the velocity V and the angle 𝜃 of the
barge using the laws of sines and cosines.

30°

V

θ

W E

N

S
x

y

V
bw  = 12

VW = 4

Figure P3.29 A barge crossing a river against the
water current.

3-30. The impedance triangle of a resistor (R)
and an inductor (L) connected in series
in an AC circuit is shown in Fig. P3.30,
where R = 100 Ω is the resistance of
the resistor and XL = 30 Ω is the induc-
tive reactance of the inductor. Find the
impedance Z and the phase angle 𝜃.

Z

θ
R = 100 Ω 

R = 100 Ω 

XL = 30 Ω 
XL = 30 Ω 

Figure P3.30 A series AC circuit containing R
and L.

3-31. The impedance triangle of a resistor
(R) and a capacitor (C) connected in
series in an AC circuit is shown in Fig.
P3.31, where R = 75 Ω is the resistance
of the resistor and XC = 25 Ω is the
capacitive reactance of the capacitor.
Find the impedance Z and the phase
angle 𝜃.

Z

θ
R = 75 Ω 

R = 75 Ω 

XC = 25 Ω 
XC = 25 Ω 

Figure P3.31 A series AC circuit containing R
and C.

3-32. The impedance triangle of a resistor (R)
and an inductor (L) connected in series
in an AC circuit is shown in Fig. P3.32,
where R = 1000 Ω is the resistance of
the resistor and Z = 1005 Ω is the total
impedance of the circuit. Find the induc-
tive reactance XL and the phase angle 𝜃.

R

Z = 1005 Ω
XL

XLθ
R = 1000 Ω 

θZ

Figure P3.32 Impedance triangle to find the
inductive reactance.

3-33. The gas boron trifluoride (BF3) has a
trigonal planar configuration as shown
in Fig. P3.33. The B-F bond length is 1.3
Angstrom. Adjacent fluoride molecules
form a 120∘ angle. Find the distance
between adjacent fluoride molecules.

120°
B

F

F F

Figure P3.33 Planar configuration of boron
trifluoride.

3-34. The phasor diagram of a series RL cir-
cuit is shown in Fig. P3.34, where VR is
the voltage across the resistor, VL is the
voltage across the inductor, and V is the
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AC voltage applied to the RL circuit in
volts. Find the total voltage V and the
phase angle 𝜃.

VL = 5 V 

VR = 10 V 

R

θ L 

V

Figure P3.34 Phasor diagram of an RL circuit.

3-35. Consider the position of the toes of a
person sitting in a chair as shown in
Fig. P3.35.
(a) Suppose 𝜃1 = −45∘, 𝜃2 = 30∘, l1 =

20 in., and l2 = 5 in. Determine the
x- and y-coordinates of the position
of the toes P(x, y).

(b) Now suppose that the leg is posi-
tioned such that the tip of the toes
is located in the fourth quadrant
and oriented in the ankle-up posi-
tion (counterclockwise direction)
as shown Fig P3.35. If the end
of the toes is located at P(x, y) =
(14.33 in., −19.82 in.), determine
the values of 𝜃1 and 𝜃2.

O

Toes

Ankle

y, in.

20

θ1

θ2

5

x, in.
Knee

Figure P3.35 Ankle-up position of the leg.

3-36. A three-phase AC system has a trig-
onal planar configuration as shown in
Fig. P3.36. The voltage of each phase

is 100 V and the angle between the
adjacent phase is 120∘. Find the voltage
between phase a and b (i.e., find Vab).

+

c

++

−
− 120

n
100 V 100 V

ab

abV

−

Figure P3.36 Three-phase AC system.

3-37. In a motion capture study of a runner,
one frame shows the subject support-
ing her weight on one leg, as shown in
Fig. P3.37. The length of the foot seg-
ment (from ankle to toe) is 8 in. and the
length of the lower leg (from ankle to
knee) is 18 in.

y

30

60

x

Knee

Toes

Ankle

(a) During a motion capture
study.

(b) To find θ1 and θ2.

, in.
Knee

(−6.25, 25)

Toes
x, in.

Ankle

θ1

θ2

y

Figure P3.37 Position of the runner’s leg.

(a) Given the angles shown in Fig.
P3.37(a), find the position of the
knee if the runner’s toes touch the
ground at the point x = y = 0.

(b) Now suppose that the same leg is
positioned such that the knee is
located in the second quadrant and
oriented in the knee-down posi-
tion (clockwise direction), as shown
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Fig. P3.37(b). If the knee is located
at P(x, y) = (−6.25 in., 25 in.),
determine the values of 𝜃1 and 𝜃2.

3-38. Consider the elevation between the two
benchmarks shown in Fig. P3.38. The
distance L between the benchmarks B1
and B2 is 200 m, and their elevations are
500 m and 600 m, respectively.

500.0

600.0
B2

x, m

L

B1

y, m

θ

Δy

Δx

Figure P3.38 Elevation between the two
benchmarks.

(a) Find the angle of inclination 𝜃 of
the grade. Also calculate the per-
cent grade.

(b) Calculate the horizontal distance
between the benchmarks.

(c) Check the results in part (b) using
the Pythagorean theorem.

3-39. To find the height of a building, a sur-
veyor measures the angle of the build-
ing from two different points A and B
as shown in Fig. P3.39. The distance
between the two points is 10 m. Find the
height h of the building.

A

h

10 m

60°40°

B

Figure P3.39 Survey set up to find the height of a
building.

3-40. Consider the elevation between the two
benchmarks shown in Fig. P3.40. The
distance L between the benchmarks B1
and B2 is 100 m, and their elevations are
500 m and 400 m, respectively.
(a) Find the angle of inclination 𝜃 of

the grade. Also calculate the per-
cent grade.

(b) Calculate the horizontal distance
between the benchmarks.

(c) Check the results in part (b) using
the Pythagorean theorem.

L

400.0

y, m 

B2

B1

x, m
Δx

500.0

Δy

θ

Figure P3.40 Elevation between the two
benchmarks for problem P3-39.
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Vectors in
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CHAPTER
4

The applications of two-dimensional vectors in engineering are introduced in this
chapter. Vectors play a very important role in engineering. The quantities such as
displacement (position), velocity, acceleration, forces, electric and magnetic fields,
and momentum have not only a magnitude but also a direction associated with them.
To describe the displacement of an object from its initial point, both the distance and
direction are needed. A vector is a convenient way to represent both magnitude and
direction and can be described in either a Cartesian or a polar coordinate system
(rectangular or polar forms).

For example, an automobile traveling north at 65 mph can be represented by
a two-dimensional vector in polar coordinates with a magnitude (speed) of 65 mph
and a direction along the positive y-axis. It can also be represented by a vector in
Cartesian coordinates with an x-component of zero and a y-component of 65 mph.
The tip of the one-link and two-link planar robots introduced in Chapter 3 will be
represented in this chapter using vectors both in Cartesian and polar coordinates.
The concepts of unit vectors, magnitude, and direction of a vector will be introduced.

4.1 INTRODUCTION

Graphically, a vector
−−→
OP or simply P⃗ with the initial point O and the final point P can

be drawn as shown in Fig. 4.1. The magnitude of the vector is the distance between
points O and P (magnitude = P) and the direction is given by the direction of the

y

Magnitude = P

P

x
O

θ

Figure 4.1 A representation of a vector.

107
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arrow or the angle 𝜃 in the counterclockwise direction from the positive x-axis as
shown in Fig. 4.1. The arrow above P indicates that P is a vector. In many engineering
books, the vectors are also written as a boldface P.

4.2 POSITION VECTOR IN RECTANGULAR FORM

The position of the tip of a one-link robot represented as a 2-D vector P⃗ (Fig. 4.2)
can be written in rectangular form as

P⃗ = Px î + Py ĵ,

where î is the unit vector in the x-direction and ĵ is the unit vector in the y-direction
as shown in Fig. 4.2. Note that the magnitude of the unit vectors is equal to 1. The x-
and y-components, Px and Py, of the vector P⃗ are given by

Px = P cos 𝜃

Py = P sin 𝜃.

y

Py
P

P

ĵ
θ

x
î Px

Figure 4.2 One-link planar robot as a position vector in Cartesian coordinates.

4.3 POSITION VECTOR IN POLAR FORM

The position of the tip of a one-link robot represented as a 2-D vector P⃗ (Fig. 4.2)
can be also be written in polar form as

P⃗ = P∠𝜃,

where P is the magnitude and 𝜃 is the angle or direction of the position vector P⃗, and
can be obtained from the Cartesian components Px and Py as

P =
√

P2
x + P2

y

𝜃 = atan2(Py, Px).
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Example
4-1

The length (magnitude) of a one-link robot shown in Fig. 4.2 is given as P = 0.5 m
and the direction is 𝜃 = 30∘. Find the x- and y-components Px and Py and write P⃗
in rectangular vector notation.

Solution The x- and y-components Px and Py are given by

Px = 0.5 cos 30∘

= 0.5

(√
3

2

)
= 0.433 m

Py = 0.5 sin 30∘

= 0.5
(

1
2

)
= 0.25 m.

Therefore, the position of the tip of the one-link robot can be written in vector
form as

P⃗ = 0.433 î + 0.25 ĵ m.

Example
4-2

The length of a one-link robot shown in Fig. 4.2 is given as P =
√

2 m and the
direction is 𝜃 = 135∘. Find the x- and y-components Px and Py and write P⃗ in vector
notation.

Solution The x- and y-components Px and Py are given by

Px =
√

2 cos 135∘ = −
√

2 cos 45∘

= −
√

2

(
1√
2

)
= −1.0 m

Py =
√

2 sin 135∘ =
√

2 sin 45∘

=
√

2

(
1√
2

)
= 1.0 m.

Therefore, the position of the tip of the one-link robot can be written in vector
form as

P⃗ = −1.0 î + 1.0 ĵ m.

Example
4-3 The x- and y-components of the one-link robot are given as Px =

√
3

4
m and Py = 1

4
m, as shown in Fig. 4.3. Find the magnitude (length) and direction of the robot
represented as a position vector P⃗.
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P

P

θ

1
4

√3
4

y

x

Figure 4.3 One-link planar robot for example 4-3.

Solution The length (magnitude) of the one-link robot is given by

P =
√

P2
x + P2

y

=

√√√√√(√
3

4

)2

+
(

1
4

)2

= 0.5 m

and the direction 𝜃 is given by

𝜃 = atan2

(
1
4
,

√
3

4

)

= 30∘.

Therefore, the position of the one-link robot P⃗ can be written in polar form as

P⃗ = 0.5∠30∘ m.

The position of the tip can also be written in Cartesian coordinates as

P⃗ =
√

3
4

î + 1
4

ĵ m.

Example
4-4

A person pushes down on a vacuum cleaner with a force of F = 20 lb at an angle of
−40∘ relative to ground, as shown in Fig. 4.4. Determine the horizontal and vertical
components of the force.
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40 Fy

Fx

x

y
F = 20 lb 

Figure 4.4 A person pushing a vacuum cleaner.

Solution The x- and y-components of the force are given by

Fx = F cos (−40∘)

= 20 cos 40∘

= 15.32 lb

Fy = F sin (−40∘)

= −20 sin 40∘

= −12.86 lb.

Therefore, F⃗ = 15.32 î − 12.86 ĵ lb.

4.4 VECTOR ADDITION

The sum of two vectors P⃗1 and P⃗2 is a vector P⃗ written as

P⃗ = P⃗1 + P⃗2. (4.1)

Vectors can be added graphically or algebraically. Graphically, the addition of two
vectors can be obtained by placing the initial point of P⃗2 on the final point of P⃗1 and
then drawing a line from the initial point of P⃗1 to the final point of P⃗2, forming a
triangle as shown in Fig. 4.5.

P2 

P1

P

O

Figure 4.5 Graphical addition of two vectors.
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Algebraically, the addition of two vectors given in equation (4.1) can be carried out
by adding the x- and y-components of the two vectors. Vectors P⃗1 and P⃗2 can be
written in Cartesian form as

P⃗1 = Px1 î + Py1 ĵ, (4.2)

P⃗2 = Px2 î + Py2 ĵ. (4.3)

Substituting equations (4.2) and (4.3) into equation (4.1) gives

P⃗ = (Px1 î + Py1 ĵ) + (Px2 î + Py2 ĵ)

= (Px1 + Px2) î + (Py1 + Py2) ĵ

= Px î + Py ĵ,

where Px = Px1 + Px2 and Py = Py1 + Py2. Therefore, addition of vectors alge-
braically amounts to adding their x- and y-components.

4.4.1 Examples of Vector Addition in Engineering

Example
4-5

A two-link planar robot is shown in Fig. 4.6. Find the magnitude and angle of the

position of the tip of the robot if the length of the first link P1 = 1√
2

m, the length

of the second link P2 = 0.5 m, 𝜃1 = 45∘, and 𝜃2 = −15∘. In other words, write P⃗ in
polar coordinates.

y

P1

P1 P

θ
45° 

O

15° P2

P2 P
Py2

Py1

x

Px1 Px2

Figure 4.6 Position of two-link robot using vector addition.

Solution The x- and y-components of the first link of the planar robot P⃗1 can be written as

Px1 = P1 cos 45∘

=

(
1√
2

) (
1√
2

)

= 0.5 m
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Py1 = P1 sin 45∘

=

(
1√
2

) (
1√
2

)

= 0.5 m.

Therefore, P⃗1 = 0.5 î + 0.5 ĵ m. Similarly, the x- and y-components of the second
link P⃗2 can be written as

Px2 = P2 cos 30∘

= 0.5

(√
3

2

)
= 0.433 m

Py2 = P2 sin 30∘

= 0.5
(

1
2

)
= 0.25 m.

Therefore, P⃗2 = 0.433 î + 0.25 ĵ m. Finally, since P⃗ = P⃗1 + P⃗2,

P⃗ = (0.5 î + 0.5 ĵ) + (0.433 î + 0.25 ĵ)
= 0.933 î + 0.75 ĵ.

The magnitude and direction of the vector P⃗ are given by

P =
√
(0.933)2 + (0.75)2 = 1.197 m

𝜃 = atan2(0.75, 0.933) = 38.79∘.

Therefore, P⃗ = 1.197∠38.79∘ m.

Example
4-6

A sinusoidal current is flowing through the RL circuit shown in Fig. 4.7. The voltage
phasors (vector used to represent voltages and currents in AC circuits) across the
resistor R = 20 Ω and inductor L = 100 mH are given as V⃗R = 2 ∠0∘ V and V⃗L =
3.77 ∠90∘ V, respectively. If the total voltage phasor V⃗ across R and L is V⃗ = V⃗R +
V⃗L, find the magnitude and phase (angle) of V⃗.

i = 100 sin(120πt) mA 

+

+

R = 20 Ω VR

V
−

L = 100 mH
+
VL

−
−

Figure 4.7 Sum of voltage phasors in an RL circuit.
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Solution The x- and y-components of the voltage phasor V⃗R are given by

VRx = 2 cos 0∘

= 2.0 V

VRy = 2 sin 0∘

= 0 V.

Therefore, V⃗R = 2.0 î + 0 ĵ V. Similarly, the x- and y-components of the voltage
phasor V⃗L are given by

VLx = 3.77 cos 90∘

= 0 V

VLy = 3.77 sin 90∘

= 3.77 V.

Therefore, V⃗L = 0 î + 3.77 ĵ V. Finally, since V⃗ = V⃗R + V⃗L,

V⃗ = (2.0 î + 0 ĵ) + (0 î + 3.77 ĵ)

= 2.0 î + 3.77 ĵ V.

Thus, the magnitude and phase of the total voltage phasor V⃗ are given by

V =
√
(2.0)2 + (3.77)2 = 4.27 V

𝜃 = atan2(3.77, 2.0) = 62.05∘.

Therefore, V⃗ = 4.27∠62.05∘ V.

Example
4-7

A ship travels 200 miles at 45∘ northeast, then 300 miles due east as shown in
Fig. 4.8. Find the resulting position of the ship.

N

W E

y

S

P2 = 300

P 1
 = 200

45° P

θ

0
x

Figure 4.8 Resulting position of the ship after travel.
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Solution The x- and y-components of the position vector P⃗1 are given by

Px1 = P1 cos 45∘

= 200

(
1√
2

)

= 141.4 mi

Py1 = P1 sin 45∘

= 200

(
1√
2

)

= 141.4 mi.

Therefore, P⃗1 = 141.4 î + 141.4 ĵ mi. Similarly, the x- and y-components of the
position vector P⃗2 are given by

Px2 = P2 cos 0∘

= 300 (1)

= 300 mi

Py2 = P2 sin 0∘

= 300 (0)

= 0 mi.

Therefore, P⃗2 = 300 î + 0 ĵ mi. Finally, since P⃗ = P⃗1 + P⃗2,

P⃗ = (141.4 î + 141.4 ĵ) + (300 î + 0 ĵ)

= 441.4 î + 141.4 ĵ mi.

Thus, the distance and direction of the ship after traveling 200 miles northeast and
then 300 miles east are given by

P =
√
(441.4)2 + (141.4)2 = 463.5 mi

𝜃 = atan2(141.4, 441.4) = 17.76∘.

Therefore, P⃗ = 463.5∠17.76∘ miles. In other words, the ship is now located at 463.5
miles, 17.76∘ northeast from its original location.

Example
4-8

Relative Velocity: An airplane is flying at an air speed of 100 mph at a heading of
30∘ southeast, as shown in Fig. 4.9. If the velocity of the wind is 20 mph due west,
determine the resultant velocity of the plane with respect to the ground.
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N

W E

y
S

x
30°

θ

Vpg

V
pa = 100

Vag = 20

Figure 4.9 Velocity of the plane relative to ground.

Solution The x- and y-components of the velocity of the plane relative to air, V⃗pa, are
given by

Vxpa = Vpa cos (−30∘)

= 100

(√
3

2

)
= 86.6 mph

Vypa = Vpa sin (−30∘)

= −100
(

1
2

)
= −50.0 mph.

Therefore, V⃗pa = 86.6 î − 50.0 ĵ mph. Similarly, the x- and y-components of the
velocity of air (wind) relative to ground V⃗ag are given by

Vxag = Vag cos (180∘)

= 20 (−1)
= −20 mph

Vyag = Vag sin (180∘)
= 20 (0)
= 0 mph.

Therefore, V⃗ag = −20 î + 0 ĵ mph. Finally, the velocity of the plane relative to
ground V⃗pg = V⃗pa + V⃗ag is given by

V⃗pg = (86.6 î − 50 ĵ) + (−20 î + 0 ĵ)

= 66.6 î − 50 ĵ mph.
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Thus, the speed and direction of the airplane relative to ground are given by

Vpg =
√
(66.6)2 + (−50)2 = 83.3 mph

𝜃 = atan2(−50, 66.6) = −36.9∘.

Therefore, V⃗pg = 83.3∠−36.9∘ mph.

Note: The velocity of the airplane relative to ground can also be found using the laws
of cosines and sines discussed in Chapter 3. Using the triangle shown in Fig. 4.10,
the speed of the airplane relative to ground can be determined using the law of
cosines as

V2
pg = 202 + 1002 − 2 (20) (100) cos(30∘)

= 6936.

y

x

30°

α

Vpg

100

30°
20

Figure 4.10 The triangle to determine the speed and direction of the plane.

Therefore, Vpg = 83.28 mph. Also, using the law of sines, the angle 𝛼 can be found as

sin 30∘
Vpg

= sin 𝛼

20
.

Therefore, sin 𝛼 = 20 sin 30∘
Vpg

= 0.12 and the value of 𝛼 = 6.896∘. The direction of the

velocity of the airplane relative to ground can now be found as 𝜃 = 30 + 𝛼 = 36.89∘.
The velocity of the plane relative to ground is, therefore, given as

V⃗pg = 83.3∠−36.9∘ mph.

Note that while this geometric approach works fine when adding two vectors, it
becomes unwieldy when adding three or more vector quantities. In such cases, the
algebraic approach is preferable.
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Example
4-9

Static Equilibrium: A 100 kg object is hanging from two cables of equal length as
shown in Fig. 4.11. Determine the tension in each cable.

g = 9.81 m/s2

45° 45°

100 kg

Figure 4.11 An object hanging from two cables.

Solution The free-body diagram (FBD) of the system shown in Fig. 4.11 can be drawn as
shown in Fig. 4.12.

T2 cos 45°

100 kg

T1 T2

T1 sin 45°

T1 cos 45°
45° 45°

T2 sin 45°

y

x

W = mg = (100)(9.81) = 981 N 

Figure 4.12 Free-body diagram of the system shown in Fig. 4.11.

It is assumed that the system shown in Fig. 4.11 is in static equilibrium (not accel-
erating), and therefore, the sum of all the forces is equal to zero (Newton’s first
law), for example, ∑

F⃗ = 0

or
T⃗1 + T⃗2 + W⃗ = 0. (4.4)

The x- and y-components of the tension T⃗1 are given by

Tx1 = −T1 cos 45∘

= −T1

(
1√
2

)
N

Ty1 = T1 sin 45∘

= T1

(
1√
2

)
N.
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Therefore, T⃗1 = −
T1√

2
î +

T1√
2

ĵ N. Similarly, the x- and y-components of the ten-

sion T⃗2 and weight W⃗ are given by

Tx2 = T2 cos 45∘

= T2

(
1√
2

)
N

Ty2 = T2 sin 45∘

= T2

(
1√
2

)
N

Wx = W cos (−90∘)

= 0 N

Wy = W sin (−90∘)

= −981 N.

Therefore, T⃗2 =
T2√

2
î +

T2√
2

ĵ N and W⃗ = 0 î + −981 ĵ N. Substituting T⃗1, T⃗2,

and W⃗ into equation (4.4) gives(
−

T1√
2

î +
T1√

2
ĵ

)
+

(
T2√

2
î +

T2√
2

ĵ

)
+ (0î − 981ĵ) = 0

(
−

T1√
2
+

T2√
2

)
î +

(
T1√

2
+

T2√
2
− 981

)
ĵ = 0. (4.5)

In equation (4.5), the x-component is the sum of the forces in the x-direction and
the y-component is the sum of forces in the y-direction. Since the right-hand side
of equation (4.5) is zero, the sum of forces in the x- and y-directions is zero, or∑

Fx = 0 and
∑

Fy = 0. Therefore,

∑
Fx =

(
−

T1√
2
+

T2√
2

)
= 0 (4.6)

and, ∑
Fy =

(
T1√

2
+

T2√
2

)
− 981 = 0. (4.7)

Adding equations (4.6) and (4.7) gives
2 T2√

2
= 981 or T2 = 693.7 N. Also, from

equation (4.6), T2 = T1. Therefore, both cables have the same tension, that is,
T1 = T2 = 693.7 N.
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Example
4-10

Static Equilibrium: A 100 kg television is loaded onto a truck using a ramp at a
30∘ angle. Find the normal and frictional forces on the TV if it is left sitting on
the ramp.

TV

g
30°

Figure 4.13 Loading a TV onto the truck using a ramp.

Solution The free-body diagram (FBD) of the TV sitting on the ramp as shown in Fig. 4.13
is given in Fig. 4.14, where W = 100 × 9.81 = 981 N.

x

F
N

30°

W = (9.81)(100) = 981 N   

y

Figure 4.14 Free-body diagram of a TV on the 30∘ ramp.

Note that we are using the rotated axes to simplify the computation below. It is
assumed that the system shown in Fig. 4.13 is in static equilibrium; therefore, the
sum of all the forces is equal to zero (Newton’s first law):∑

F⃗ = 0

F⃗ + N⃗ + W⃗ = 0. (4.8)

The x- and y-components of the TV weight W⃗ are given by

Wx = −W sin 30∘

= −981
(

1
2

)
= −490.5 N

Wy = −W cos 30∘

= −981

(√
3

2

)

= −849.6 N.
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Therefore, W⃗ = −490.5 î − 849.6 ĵ N. Similarly, the x- and y-components of the
frictional force F⃗ and normal force N⃗ are given by

Fx = F cos 0∘

= F N

Fy = F sin 0∘

= 0 N

Nx = N cos (90∘)

= 0 N

Ny = N sin (90∘)

= N N.

Therefore, F⃗ = F î + 0 ĵ N and N⃗ = 0 î + N ĵ N. Substituting F⃗, N⃗, and W⃗ into
equation (4.8) gives

(F î + 0 ĵ ) + (0 î + N ĵ ) + (−490.5 î − 849.6 ĵ ) = 0

(F + 0 − 490.5) î + (0 + N − 849.6) ĵ = 0. (4.9)

Equating the x- and y-components in equation (4.9) to zero yields

F − 490.5 = 0 ⇒ F = 490.5 N

N − 849.6 = 0 ⇒ N = 849.6 N.

Example
4-11

A waiter extends his arm to hand a plate of food to his customer. The free-body
diagram is shown in Fig. 4.15, where Fm = 400 N is the force in the deltoid muscle,
Wa = 40 N is the weight of the arm, Wp = 20 N is the weight of the plate of food,
and Rx and Ry are the x- and y-components of the reaction forces at the shoulder.

(a) Using the x–y coordinate system shown in Fig. 4.15, write the muscle force F⃗m,
the weight of the arm W⃗a, and the weight of the plate W⃗p in the standard in
the standard vector notation (i.e., using unit vectors i and j).

(b) Determine the values of Rx and Ry required for static equilibrium: R⃗ + F⃗m +
W⃗a + W⃗p = 0. Also compute the magnitude and direction of R⃗.

30°

Plate of food

Deltoid muscle

Shoulder joint

Wa Wp

Fm

Rx

Ry

y

x

(b)(a)

Figure 4.15 Waiter handing a plate to a customer.
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Solution (a) The x- and y-components of the deltoid muscle force F⃗m are given by

Fm,x = Fm cos 150∘

= −400 cos 30∘

= −400 × 0.866

= −346.4 N

Fm,y = Fm sin 150∘

= 400 sin 30∘

= 400 × 0.5

= 200 N.

Therefore, F⃗m = −346.4 î + 200 ĵ N. Similarly, the x- and y-components of the
weight of the arm W⃗a and weight of the plate Wp are given by

Wa,x = Wa cos (−90)∘

= 0 N

Wa,y = Wa sin (−90)∘

= −40 N

Wp,x = Wp cos (−90)∘

= 0 N

Wp,y = Wp sin (−90)∘

= −20 N.

Therefore, W⃗a = 0 î − 40 ĵ N and W⃗p = 0 î − 20 ĵ N.

(b) It is assumed that the system shown in Fig. 4.15 is in static equilibrium; there-
fore, the sum of all the forces is equal to zero (Newton’s first law):

F⃗m + W⃗a + W⃗p + R⃗ = 0

(−346.4 î + 200 ĵ) + (0 î − 40 ĵ) + (0 î − 20ĵ) + (Rx î + Ry ĵ) = 0

(Rx − 346.4 + 0 + 0) î + (Ry + 200 − 40 − 20) ĵ = 0. (4.10)

Equating the x- and y-components in equation (4.10) to zero yields∑
Fx = 0 ∶ ⇒ Rx − 346.4 = 0 ⇒ Rx = 346.4 N∑

Fy = 0 ∶ ⇒ Ry + 200 − 40 − 20 = 0 ⇒ Ry = −140 N.

Therefore, R⃗ = 346.4 i⃗ − 140 j⃗ N. The magnitude and direction of R⃗ can be
obtained as

R⃗ =
√
(346.4)2 + (−140)2 ∠atan2(−140, 346.4)

= 373.6∠−22∘ N. (4.11)
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Example
4-12

Using motion capture, the positions of each arm segment are measured while a
person throws a ball. The length from shoulder to elbow (P1) is 12 in. and the
length from elbow to hand (P2) is 18 in. The angle 𝜃1 is 45∘ and 𝜃2 is 20∘.

y
P

P 2

P 1

Ball

θ2

Shoulder

Elbow

θ1 x

Figure 4.16 Position of the arm throwing a ball.

(a) Using the x–y coordinate system shown in Fig. 4.16, write the position of the
ball P⃗ = P⃗1 + P⃗2 in the standard vector notation.

(b) Find the magnitude and direction of P⃗.

Solution (a) The x- and y-components of the position P⃗1 are given by

P1x = P1 cos 45∘

= 12 ×
√

2
2

= 8.49 in.

P1y = P1 sin 45∘

= 12 ×
√

2
2

= 8.49 in.

Therefore, P⃗1 = 8.484 î + 8.484 ĵ in. Similarly, the x- and y-components of the
position P⃗2 are given by

P2x = P2 cos (45∘ + 20∘)

= 18 × (0.4226)

= 7.61 in.

P2y = P2 sin (45∘ + 20∘)

= 18 × (0.9063)

= 16.31 in.
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Therefore, P⃗2 = 7.61 î + 16.31 ĵ in. The position of the arm P⃗ can now be found
in standard vector notation by adding vectors P⃗1 and P⃗2 as

P⃗ = P⃗1 + P⃗2

= 8.49 î + 8.49 ĵ + 7.61 î + 16.31 ĵ

= 16.1 î + 25.80 ĵ in. (4.12)

(b) The magnitude of the position P⃗ is given by

P =
√

P2
x + P2

y

=
√

16.12 + 25.82

= 29.6 in.

The direction of position P⃗ is given by

𝜃 = atan2(Py,Px)

= atan2(25.8, 16.1)

= 58∘.

Therefore, the vector P⃗ can be written in the polar form as P⃗ = 29.6∠58∘ in.

PROBLEMS

4-1. Locate the tip of a one-link robot of 10 in.
length as a 2-D position vector with a
direction of 30∘. Draw the position vector
and find its x- and y-components. Also,
write P⃗ in both its rectangular and polar
forms.

4-2. Locate the tip of a one-link robot of
1.5 ft length as a 2-D position vector with
a direction of −30∘. Draw the position
vector and find its x- and y-components.
Also, write P⃗ in both its rectangular and
polar forms.

4-3. Locate the tip of a one-link robot of
0.75 m length as a 2-D position vec-
tor with a direction of 135∘. Draw

the position vector and find its x- and
y-components. Also, write P⃗ in both its
rectangular and polar forms.

4-4. Locate the tip of a one-link robot of
2 m length as a 2-D position vector with
a direction of −135∘. Draw the position
vector and find its x- and y-components.
Also, write P⃗ in both its rectangular and
polar forms.

4-5. The tip of a one-link robot is repre-
sented as a position vector P⃗ as shown in
Fig. P4.5. Find the x- and y-components
of the vector if the length of the link is
P = 8 in. and 𝜃 = 60∘. Also, write the vec-
tor P⃗ in rectangular and polar form.
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Py

θ

Px

y

P

x

P

Figure P4.5 A one-link robot represented in polar
coordinates.

4-6. Repeat problem P4-5 if P =14.42 cm and
𝜃 = 123.7∘.

4-7. Repeat problem P4-5 if P =12 cm and
𝜃 = −150∘.

4-8. Repeat problem P4-5 if P = 6 in. and
𝜃 = −60∘.

4-9. The x- and y-components of a vector P⃗
shown in Fig. P4.9 are given as Px = 6 cm
and Py = 8 cm. Find the magnitude and
direction, and write the vector P⃗ in its
rectangular and polar forms.

y
P

P

θ
O Px

Py

x

Figure P4.9 A position vector for problem P4-9.

4-10. The x- and y-components of a vector P⃗
shown in Fig. P4.10 are given as Px = 3
in. and Py = −4 in. Find the magnitude
and direction, and write the vector P⃗ in
its rectangular and polar forms.

y

θ 3
x

P 4

P

Figure P4.10 A position vector for problem P4-10.

4-11. The x- and y-components of a vector P⃗
shown in Fig. P4.11 are given as Px = −4.5
cm and Py = 6 cm. Find the magnitude
and direction, and write the vector P⃗ in
its rectangular and polar forms.

P

P

− 4.5

y, cm

6

θ
x, cm

Figure P4.11 A position vector for problem P4-11.

4-12. The x- and y-components of a vector P⃗
shown in Fig. P4.12 are given as Px = −1
in. and Py = −2 in. Find the magnitude
and direction, and write the vector P⃗ in
its rectangular and polar forms.

y, in.

x, in.
−1

θ

P

−2
P

Figure P4.12 A position vector for problem P4-12.

4-13. A state trooper investigating an accident
pushes a wheel (shown in Fig. P4.13) to
measure skid marks. If a trooper applies a
force of 50 lb at an angle of 𝜃 = 37.5∘, find
the horizontal and vertical forces acting
on the wheel.

θ

Figure P4.13 A wheel to measure skid marks.
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4-14. Repeat problem P4-13 if the trooper is
applying a force of 10 lb at an angle of
𝜃 = 60∘.

4-15. A stealth submarine plots a course
through an underwater valley with three
separate position vectors, as shown in Fig.
P4.15. It first travels P1 = 5 km 60∘ north
of west in the first leg, P2 = 8 km 60∘
north of east in the second leg, and P3 = 7
km straight east in the third leg.

P3 

PR 

y, km

x, km

P2 

P1

P(x, y)

θ1

θ2

Figure P4.15 Position of a stealth submarine.

(a) Using the positive x–y coordinate
system shown in Fig. P4.15, write all
three position vectors in rectangular
form (i.e., in terms of unit vectors î
and ĵ).

(b) Use your results of part (a) to
determine the final resultant position
P⃗R = P⃗1 + P⃗2 + P⃗3 and write your
answer in both rectangular and polar
forms.

4-16. In an RL circuit, the voltage across the
inductor VL leads the voltage across the
resistor by 90∘ as shown in Fig. P4.16. If
VR =10 V and VL =15 V, find the total
voltage V⃗ = V⃗R + V⃗L.

−

+
V +

VL = 15 V  V
θ

VR     R
−
+
VL     L

VR = 10 V
−

Figure P4.16 Voltage phasor diagram of RL
circuit.

4-17. An F-22 fighter jet charts a course that
has three different legs, as shown in Fig.
P4.17. In the first leg, it flies 50∘ north-
east a distance of d1 = 400 miles. In the
second leg, the jet flies 60∘ southeast a
distance of d2 = 500 miles. In the third
leg, the jet heads 45∘ west of south for
d3 = 450 miles.

y, mi

60°

50°

45°dR

d2

d3

d1

x, mi

Figure P4.17 Position of an F-22 fighter jet.

(a) Express the position vector for each
of the three legs in rectangular form
(i.e., using unit vectors î and ĵ).

(b) Determine the resultant position of
the F-22, given by d⃗R = d⃗1 + d⃗2 + d⃗3,
in both rectangular and polar forms.
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4-18. In an RC circuit, the voltage across the
capacitor VC lags the voltage across the
resistor by −90∘ as shown in Fig. P4.18. If
VR = 10 V and VC = 20 V, find the total
voltage V⃗ = V⃗R + V⃗C.

VR = 10 V

θ

V

VC = 20 V V

+
VR R
−
+
VC

C
−

Figure P4.18 Voltage phasor diagram of RC
circuit.

4-19. A quadcopter drone flies 65∘ south of
west at Vq = 150 mph against a partial
headwind that is blowing due north at
Vw = 35 mph, as shown in Fig. P4.19.

Vq

Vw

VR

N

S

EW

y, mph

x, mph
65°

Figure P4.19 Resultant velocity of a quadcopter
drone.

(a) Express all vectors shown in the dia-
gram in rectangular form (i.e., using
unit vectors î and ĵ).

(b) Determine the resultant velocity
of the quadcopter V⃗R = V⃗q + V⃗w in
both rectangular and polar forms.

(c) Repeat part (b) using the laws of
sines and cosines and solve for the
magnitude and direction of the veloc-
ity of the quadcopter V⃗R.

4-20. In an electrical circuit, voltage V⃗2 leads
voltage V⃗1 by 60∘ as shown in Fig. P4.20.
Find the sum of the two voltages; in other
words, find V⃗ = V⃗1 + V⃗2.

V2

10 V

60° V1

20 V

Figure P4.20 Voltages V⃗1 and V⃗2 for
problem P4-20.

4-21. A boat moves diagonally across a river at
a heading of 60∘ south of east at a speed
of Vb = 8 mph. The river flows due west
at a speed of Vw = 3 mph. The resulting
vector diagram for resultant velocity VR
of the boat is shown in Fig. P4.21.

y, mph

60°
x, mph

N

W E

S

Vb

VR

Vw

Figure P4.21 Resultant velocity of boat crossing a
river.
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(a) Determine the resultant velocity VR
of the boat, which is given by V⃗R =
V⃗w + V⃗b in both rectangular and
polar forms.

(b) Repeat part (a) using the laws of
sines and cosines.

4-22. An airplane travels at a heading of −60∘
with an air speed of 500 mph. The wind
is blowing at 30∘ at a speed of 50 mph as
shown in Fig. P4.22. Find the speed (mag-
nitude of the velocity V⃗) and the direction
𝜃 of the plane relative to the ground using
vector addition. Check your answer by
finding the magnitude and direction using
the laws of sines and cosines.

y

x

60°

50
30°

500

θ

V

Figure P4.22 Velocity of airplane for
problem P4-22.

4-23. A hammock is suspended between two
trees to support the weight of a camper,
as shown in Fig. P4.23, such that 𝜃1 = 70∘
and 𝜃2 = 85∘.
(a) Using the positive x–y coordinate

system shown in the figure, write
all three vectors in rectangular form
(i.e., in terms of unit vectors î
and ĵ).

(b) If the weight of the camper is 210 lb,
determine the magnitude of the ten-
sions T1 and T2 such that T⃗1 + T⃗2 +
W⃗ = 0.

FBD:

Wy
θ1 T1 T2 θ2

x

Figure P4.23 Force balance for a camper in a
hammock.

4-24. A ship is crossing a river at a heading
of −150∘ with a speed of VSW = 30 mph
against the water as shown in Fig. P4.24.
The river is flowing in the direction of
135∘ with a speed of VW = 10 mph.

VS

VW
VSW

y

–150°
135°

V = VSW + VW

x

θ

Figure P4.24 A ship crossing a river against the
current.

(a) Calculate the resultant velocity V⃗s of
the ship using vector addition (use
the î and ĵ notation).

(b) Determine the magnitude and direc-
tion of V⃗.

(c) Repeat part (b) using the laws of
sines and cosines.
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4-25. A traffic signal of weight W = 15 lb
hangs from two cables, with dimensions
as shown in Fig. P4.25. A vector dia-
gram showing the corresponding balance
of forces is also shown in this figure.
(a) Given that l1 = 18 ft, l2 = 8 ft, and

l3 = 1.5 ft, determine the angles 𝜃1
and 𝜃2.

(b) Using the positive x–y coordinate
system shown in the figure, write the
tensions T⃗1 and T⃗2 and the weight of
the signal W⃗ in rectangular form (i.e.,
in terms of unit vectors î and ĵ).

(c) Substitute your results from part (b)
into the equilibrium equation T⃗1 +
T⃗2 + W⃗ = 0, and determine the val-
ues of T1 and T2.

l1 l2
y

T1 T2
l3θ1 θ2

FBD:

W

θ1 θ2     x

W

Figure P4.25 Traffic signal supported by cables.

4-26. A two-link planar robot is shown in
Fig. P4.26.
(a) Calculate the position of the tip P⃗ of

the planar robot using vector addi-
tion (use the î and ĵ notation).

(b) Determine the magnitude and direc-
tion of the position of the robot tip.
In other words, write vector P⃗ in the
polar form.

(c) Repeat part (b) using the laws of
sines and cosines.

4-27. Using motion capture, the positions P⃗1
and P⃗2 of each arm segment are measured
while a person throws a ball. The length
from shoulder to elbow (P1) is 10 in. and
the length from elbow to the hand hold-
ing the ball (P2) is 13 in. The angle 𝜃1 is
60∘ and 𝜃2 is 65∘.

P2      P

4

P1 P

8

120°
θ

O
x

y

Figure P4.26 A two-link robot located for problem
P4-26.

yP

Ball
P2   

θ2

Shoulder

Elbow

P1

θ1

x

Figure P4.27 Position of the arm throwing a ball.

(a) Using the x–y coordinate system
shown in Fig. P4.27, write the posi-
tion of the ball P⃗ = P⃗1 + P⃗2 in stan-
dard vector notation.

(b) Determine both the magnitude and
direction of P⃗.

4-28. A two-link planar robot is shown in
Fig. P4.28.
(a) Calculate the position of the tip P⃗ of

the planar robot using vector addi-
tion (use the î and ĵ notation).

(b) Determine the magnitude and direc-
tion of the position of the robot tip.
In other words, write vector P⃗ in the
polar form.
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(c) Repeat part (b) using the laws of
sines and cosines.

y, in.

O −45°

−135°

θ 21.21

P1 

P

x, in.

P P2

14.14

Figure P4.28 A two-link robot for problem P4-28.

4-29. A zip line supporting a person weighing
W = 200 lb is attached at two points by
a cable. The geometry and free-body dia-
gram are shown in Fig. P4.29.
(a) Determine the angles 𝜃1 and 𝜃2

if d1 = d2 = 20 ft, h1 = 9.75 ft, and
h2 = 5 ft.

(b) Write all of the forces shown in the
free-body diagram in terms of the
unknown tensions T⃗1 and T⃗2, in rect-
angular form (i.e., with î and ĵ).

y

h1 x

FBD:

T1 T2

θ1 θ2
h2

d1 d2
W

Figure P4.29 Zip line supporting a person.

45°
y

T1 T2
α

45° α

x
200 lb

10 ft5 ft

200 lb

Figure P4.30 A weight suspended from two cables for problem P4-30.

(c) Knowing that T⃗1 + T⃗2 + W⃗ = 0, solve
for the unknown tensions T1 and T2.

4-30. A 200 lb weight is suspended by two
cables as shown in Fig. P4.30.
(a) Determine the angle 𝛼.
(b) Express T⃗1 and T⃗2 in rectangular vec-

tor notation and determine the val-
ues of T1 and T2 required for static
equilibrium (i.e., T⃗1 + T⃗2 + W⃗ = 0).

4-31. An off-road vehicle loses traction on a
muddy incline and must attach its winch
to a tree that holds the vehicle in place, as
shown in Fig. P4.31. A vector diagram of
the resulting forces is also shown in this
figure.
(a) Given that h = 25 ft and b = 35 ft,

determine the angle 𝜃.
(b) Using the positive x–y coordinate

system shown in the figure, write the
forces T⃗1 and N⃗ and the weight W⃗ in
rectangular form (i.e., in terms of unit
vectors î and ĵ).

(c) If the weight of the vehicle is 3500 lb,
determine the magnitude of the nor-
mal force N and the magnitude of the
tension force T1 such that T⃗1 + N⃗ +
W⃗ = 0.

4-32. A vehicle weighing 10 kN is parked on an
inclined driveway, as shown in Fig. P4.32.
(a) Determine the angle 𝜃.
(b) Express the normal force N⃗, the fric-

tional force F⃗, and the weight W⃗ in
rectangular vector notation.

(c) Determine the values of F and N
required for equilibrium (i.e., F⃗ +
N⃗ + W⃗ = 0).
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T1

W

N

FBD:

h

b

x

y

θ

Figure P4.31 Off-road vehicle on muddy incline.

4 m
FN

W = 10 kN 

10 m

x

y

g

Figure P4.32 A vehicle parked on an inclined
driveway for problem P4-32.

4-33. A 60-in. television, with a mass of 3.11
slugs, is loaded onto a truck using a ramp
as shown in Fig. P4.33. A vector dia-
gram showing the corresponding balance
of forces acting on the TV is also shown
in this figure.
(a) Given that h = 3 ft and b = 10 ft,

determine the angle 𝜃.
(b) Using the positive x–y coordinate

system shown in the figure, write the
friction force F⃗, the normal force N⃗,
and the weight W⃗ in rectangular form
(i.e., in terms of unit vectors î and ĵ).
Note: The weight W in pounds (lbf)
is given by W = mg, where g = 32.2
ft/s2 is the acceleration due to gravity
and m is the mass in slugs.

(c) Substitute your results from part (b)
into the equilibrium equation F⃗ +
N⃗ + W⃗ = 0 and determine the values
of F and N (in lbf).

F

W
N

FBD:

h

b

θ

x

y

θ

Figure P4.33 TV loaded onto a truck.

4-34. A crate of weight W = 100 lb sits on
a ramp oriented at 27 degrees relative
to ground, as shown in Fig. P4.34. The
free-body diagram showing the external
forces is also shown in Fig. P4.34.
(a) Using the x–y coordinate system

shown in Fig. P4.34, write the fric-
tion force F⃗ and the normal force N⃗
in rectangular vector notation (i.e., in
terms of unit vectors î and ĵ).

(b) Determine the values of F and N
required for static equilibrium; in
other words, find the values of F and
N if F⃗ + N⃗ + W⃗ = 0.

N

y 
100 lb

x

W

27°
F

Figure P4.34 A crate resting on a ramp for
problem P4-34.

4-35. A person scaling an incline at a 𝜃 = 40∘
angle has three forces acting on them:
the force of gravity (weight), the normal
force, and the friction force. The resulting
vector diagram is shown in Fig. P4.35.
(a) Using the positive x–y coordinate

system shown in the figure, write the
friction force F⃗, the normal force N⃗,
and the weight W⃗ in rectangular form
(i.e., in terms of unit vectors î and ĵ).

(b) If the total weight of the person is
W = 140 lbf, determine the magni-
tude of the friction force F and the
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normal force N needed for static
equilibrium (F⃗ + N⃗ + W⃗ = 0).

y

x N

F

θ
W

Figure P4.35 Person scaling an incline.

4-36. A two-bar truss supports a weight of W =
750 lb as shown in Fig. P4.36. The truss is
constructed such that 𝜃 = 38.7∘.
(a) Using the positive x–y coordinate

system shown in Fig. P4.36, write the
forces F⃗1, F⃗2, and weight W⃗ in rect-
angular vector notation (i.e., in terms
of unit vectors î and ĵ).

(b) Determine the values of F1 and F2
such that F⃗1 + F⃗2 + W⃗ = 0.

4-37. During a dynamometer test the front
wheels of a race car are held in place
where the a-arm links will experience ten-
sion/compression forces, as depicted in
Figure P4.37.
(a) If 𝜃 = 60∘, write all three vectors in

rectangular form (i.e., in terms of unit
vectors î and ĵ).

(b) If the applied forces from the rear
wheels result in F = 1000 lb, deter-
mine the forces F1 and F2 at the
knuckle of the hub, such that F⃗1 +
F⃗2 + F⃗ = 0.

F1
y

θ θ
x F2

W

W

Figure P4.36 A weight supported by a two-bar truss.

F2

FBD:
F

F1

θθ
θ

x

y

Figure P4.37 Forces acting at the joint of a race car
a-arm during testing.

4-38. A force F = 100 N is applied to a two-bar
truss as shown in Fig. P4.38. Express
forces F⃗, F⃗1, and F⃗2 in terms of unit vec-
tors î and ĵ and determine the values of F1
and F2 such that F⃗1 + F⃗2 + F⃗ = 0.

4-39. In order to improve a patient’s upper
body strength, a rehabilitation center
uses a variable weight sled, to be pulled
up an inclined ramp by a rope. Assuming
the ramp is frictionless, the forces acting
on the sled are as shown in Fig. P4.39.
(a) Given that b = 15 ft and h = 4 ft,

determine the angle 𝜃 that the patient
pulls the weight.

(b) Given your answer to part (a), write
all three force vectors in rectangular
form (i.e., in terms of unit vectors î
and ĵ). Use the x–y coordinate system
shown in the figure (do not rotate the
axes).
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F
2 

y

56.3º

FBD:
(Joint 2)

F

59.0º 

F1 
F2 

3 1

x

Figure P4.38 Force applied to joint 2 of a truss.

P

W

N

FBD:

θ

x

y

b

h

Figure P4.39 Forces on an inclined rehabilitation
sled.

(c) If the total weight of the sled is W =
40 lbf, determine the magnitudes of
the pulling force P and the normal
force N needed for static equilibrium
(i.e., such that P⃗ + N⃗ + W⃗ = 0).

4-40. A waiter extends his arm to hand a plate
of food to his customer. The free-body
diagram is shown in Fig. P4.40, where

Deltoid muscle

Shoulder joint Plate of food

Fm

y
θ

Rx

x
Ry Wa Wp

Figure P4.40 Waiter handing a plate to a customer.

Fm = 250
√

2 N is the force in the del-
toid muscle, Wa = 35 N is the weight of
the arm, Wp = 15 N is the weight of the
plate of food, Rx and Ry are the x- and
y-components of the reaction forces at
the shoulder, and 𝜃 = 45∘.
(a) Using the x–y coordinate system

shown in Fig. P4.40, write the deltoid
muscle force F⃗m, the weight of the
arm W⃗a, and the weight of the plate
W⃗p in the standard vector notation
(i.e., using unit vectors i and j).

(b) Determine the values of Rx and Ry
required for static equilibrium: R⃗ +
F⃗m + W⃗a + W⃗p = 0. Also compute the
magnitude and direction of R⃗.
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CHAPTER
5

Complex Numbers
in Engineering

5.1 INTRODUCTION

Complex numbers play a significant role in all engineering disciplines, and a good
understanding of this topic is necessary. However, it is especially important for the
electrical engineer to master this topic. Although imaginary numbers are not com-
monly used in daily life, in engineering and physics they are in fact used to represent
physical quantities such as impedance of an RL, RC, or an RLC circuit.

Complex numbers are numbers that consist of two parts, one real and one imag-
inary. An imaginary number is the square root of a negative real number (−1). The
square root of a negative real number is said to be imaginary because there is no
real number that gives a negative number after it has been squared. The imaginary
number

√
−1 is represented by the letter i by mathematicians and by almost all the

engineering disciplines except electrical engineering . Electrical engineers use the
letter j to represent imaginary number because the letter i is used in electrical engi-
neering to represent current. To remove this confusion,

√
−1 will be represented by

the letter j throughout this chapter.
In general, imaginary numbers are used in combination with a real number to

form a complex number, a + bj, where a is the real part (real number) and bj is the
imaginary part (real number times the imaginary unit j). The complex number is use-
ful for representing two-dimensional variables where both dimensions are physically
significant and are represented on a complex number plane (which looks very similar
to Cartesian plane discussed in Chapter 4). On this plane, the imaginary part of the
complex number is measured by the vertical axis (on the Cartesian plane, this is the
y-axis) and the real number part goes on the horizontal axis (x-axis on the Cartesian
plane). The one-link robot discussed in Chapter 3 could be described using a com-
plex number where the real part would be its component in the x-direction and the
imaginary part would be its component in the y-direction. Note that the example of
one-link planar robot is used only to show similarities between the two-dimensional
vector and the complex number. The position of the tip of the robot is generally not
described by a complex number.

In many ways, operations with complex numbers follow the same rules as those
for real numbers. However, the two parts of a complex number cannot be combined.
Even though the parts are joined by a plus sign, the addition cannot be performed.
The expression must be left as an indicated sum.

134
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5.2 POSITION OF ONE-LINK ROBOT AS A COMPLEX NUMBER

The one-link planar robot shown in Fig. 5.1 can be represented by a complex
number as

P = Px + j Py

or
P = Px + Py j,

where j =
√
−1 is the imaginary number, Px = Re(P) = l cos(𝜃) is the real part, and

Py = Im(P) = l sin(𝜃) is the imaginary part of the complex number P. The numbers
Px and Py are like the components of P in the x- and y-directions (analogous to a
2-D vector). Similarly, the one-link planar robot can be represented in polar form as

P = |P| ∠𝜃,
where |P| = l =

√
P2

x + P2
y is the magnitude and 𝜃 = atan2(Py, Px) is the angle of

the complex number P.

y

x

P

P   =
 l

Py

θ

0 Px

Figure 5.1 Representation of a one-link planar robot as a complex number.

Therefore,

P = Px + j Py

= |P| cos 𝜃 + j (|P| sin 𝜃)

= |P| (cos 𝜃 + j sin 𝜃)

= |P| ej 𝜃, (5.1)

where cos 𝜃 + j sin 𝜃 = e j𝜃 is Euler’s formula. The complex number written as in
equation (5.1) is known as the exponential form of the complex number and can
be used to express the cosine and sine functions. The cosine function is the real part
of the exponential function and the sine function as the imaginary part of the expo-
nential function; that is

cos 𝜃 = Re (ej 𝜃)
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and
sin 𝜃 = Im(ej 𝜃).

In summary, a point P in the rectangular plane (x–y plane) can be described as a
vector or a complex number as

P⃗ = Px î + Py ĵ · · · · · · vector form

P = Px + j Py ⋅ ⋅ · · · · · · complex number in rectangular form

P = |P| ∠𝜃 ⋅ ⋅ ⋅ ⋅ · · · · · · complex number in polar form

P = |P| ej 𝜃 ⋅ ⋅ ⋅ · · · · · · complex number in exponential form

5.3 IMPEDANCE OF R, L, AND C AS A COMPLEX NUMBER

5.3.1 Impedance of a Resistor R

The impedance of the resistor shown in Fig. 5.2 can be written as ZR = R Ω, where
R is the resistance in ohms (Ω). If R = 100 Ω, the impedance of the resistor can be
written as a complex number in rectangular and polar forms as

ZR = R Ω

= 100 Ω

= 100 + j 0 Ω

= 100 ∠0∘ Ω

= 100 e j 0∘ Ω.

R

Figure 5.2 A resistor.

5.3.2 Impedance of an Inductor L

The impedance of the inductor shown in Fig. 5.3 can be written as ZL = j𝜔L Ω, where
L is the inductance in henry (H) and 𝜔 = 2𝜋f is the angular frequency in rad/s (f is
the linear frequency or frequency in hertz (Hz)). If L = 25 mH and f = 60 Hz, the
impedance of the inductor can be written as a complex number in rectangular and
polar forms as

ZL = j 𝜔 L Ω

= j (2 𝜋 60) (0.025) Ω

= 0 + j 9.426 Ω

= 9.426 ∠90∘ Ω

= 9.426 e j 90∘ Ω.
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L

Figure 5.3 An inductor.

5.3.3 Impedance of a Capacitor C

The impedance of the capacitor shown in Fig. 5.4 can be written as ZC = 1
j𝜔C

Ω,

where C is the capacitance in farad (F) and 𝜔 is the angular frequency in rad/s. If
C = 20 𝜇F and f = 60 Hz, the impedance of the capacitor can be written as a complex
number in rectangular form as

ZC = 1
j 𝜔 C

Ω

= 0 + 1
j (120 𝜋) (20 ∗ 10−6)

Ω

= 0 + 132.6
j

Ω

= 0 + 132.6
j

( j
j

)
Ω

= 0 +
132.6 j

j2
Ω

= 0 − 132.6 j Ω,

where j2 = (
√
−1)2 = −1. The impedance of the capacitor can also be written in polar

and exponential form as

ZC = 132.6 ∠−90∘ Ω

= 132.6 e−j 90∘ Ω.

C

Figure 5.4 A capacitor.

5.4 IMPEDANCE OF A SERIES RLC CIRCUIT

The total impedance of the series RLC circuit shown in Fig. 5.5 is given by

ZT = ZR + ZL + ZC, (5.2)

where ZR = R Ω, ZL = j𝜔L Ω, and ZC = 1
j𝜔C

Ω.
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L

R

C

Figure 5.5 A series RLC circuit.

For the values of R = 100 Ω, L = 25 mH, C = 20 𝜇F, and 𝜔 = 120𝜋 rad/s, the
impedance of R, L, and C were calculated in Section 5.3 as

ZR = 100 + j 0 Ω

ZL = 0 + j 9.426 Ω

ZC = 0 − j 132.6 Ω.

Since ZT = ZR + ZL + ZC, the total impedance of the series RLC circuit can be cal-
culated as

ZT = (100 + j 0) + (0 + j 9.426) + (0 − j 132.6) Ω

= (100 + 0 + 0) + j (0 + 9.426 + (−132.6)) Ω

= 100 − j 123.174 Ω.

Therefore, the total impedance of the series RLC circuit shown in Fig. 5.5 in rectan-
gular form is ZT = 100 − j 123.174 Ω. The polar and exponential forms of the total
impedance can be calculated from the rectangular form as

Polar Form: ZT = |ZT | ∠𝜃, where

|ZT | =√
1002 + (−123.174)2

= 158.7 Ω

𝜃 = atan2(−123.174, 100)

= −50.93∘.

Therefore, ZT = 158.7 ∠−50.93∘ Ω.

Exponential Form: ZT = |ZT | e j 𝜃 = 158.7 e −j 50.93∘ Ω.

Note: The addition and subtraction of complex numbers is best done in the rectan-
gular form. If the complex numbers are given in the polar or exponential form, they
should be converted to rectangular form to carry out the addition or subtraction of
these complex numbers. However, if the result is needed in the polar or exponential
form, the conversion from the rectangular to polar or exponential forms is carried
out as a last step.

In summary, the addition and subtraction of two complex numbers can be
carried out using the following steps.
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Addition of Two Complex Numbers: The addition of two complex numbers Z1 =
a1 + j b1 and Z2 = a2 + j b2 can be obtained as

Z = Z1 + Z2

= (a1 + j b1) + (a2 + j b2)

= (a1 + a2) + j (b1 + b2)

= a + j b.

Therefore, the real part, a, of the addition of complex numbers, Z, is obtained by
adding the real parts of the complex numbers being added, and the imaginary part
of the addition of the two complex numbers is obtained by adding the imaginary
parts of complex numbers being added.

Subtraction of Two Complex Numbers: Similarly, the subtraction of the two com-
plex numbers Z1 and Z2 can be obtained as

Z = Z1 − Z2

= (a1 + j b1) − (a2 + j b2)

= (a1 − a2) + j (b1 − b2)

= c + j d.

Therefore, the real part, c, of the subtraction of two complex numbers Z1 and
Z2 (Z1 − Z2) is obtained by subtracting the real part a2 of complex numbers Z2
from the real part a1 of complex number Z1. Similarly, the imaginary part of the
subtraction of the two complex numbers Z1 − Z2 is obtained by subtracting the
imaginary part b2 of complex number Z2 from the imaginary part b1 of complex
number Z1, respectively.

5.5 IMPEDANCE OF R AND L CONNECTED IN PARALLEL

The total impedance Z of a resistor R connected in parallel with an inductor L as
shown in Fig. 5.6 is given by

Z =
ZR ZL

ZR + ZL
,

where ZR = R Ω and ZL = j𝜔L Ω.

RZ

ZRZL

L

Figure 5.6 A parallel RL circuit.
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For R = 100 Ω, L = 25mH, and 𝜔 = 120 𝜋 rad/s, the impedances of R and L were
calculated in Section 5.3 as

ZR = 100 + j 0 Ω

= 100 e j 0∘ Ω

ZL = 0 + j 9.426 Ω

= 9.426 e j 90∘ Ω.

Since Z =
ZR ZL

ZR + ZL
, the total impedance of the R connected in parallel with L can

be calculated as

ZT = (100 e j 0∘)(9.426 e j 90∘)
(100 + j 0) + (0 + j 9.426)

= 942.6 e j 90∘

100 + j 9.426

= 942.6 e j 90∘

100.443 e j 5.384∘

= 9.384 e j 84.62∘

= 9.384 ∠84.62∘.

Therefore, the total impedance of a 100 Ω resistor connected in parallel with a 25
mH inductor in the polar form is Z = 9.384 ∠84.62∘ Ω. The rectangular form of the
total impedance can be calculated from the polar form as

Z = 9.384 cos(84.62∘) + j 9.384 sin(84.62∘)

= 0.88 + j 9.34. Ω.

Therefore, Z = 0.88 + j 9.34 Ω.

Note that the multiplication and division of complex numbers can be carried out
in rectangular or polar forms. However, it will be shown in Section 5.7 that it is
best to carry out these operations in polar form. If the complex numbers are given
in rectangular form, they should be converted to polar form and the result of the
multiplication or division is then obtained in the polar form. However, if the result
is needed in rectangular form, the conversion from polar to rectangular form is
carried out as a last step. The steps to carry out the multiplication and division in
the polar form are explained next.

Multiplication of Complex Number in Polar Form: The multiplication of the two
complex numbers Z1 = M1 ∠𝜃1 and Z2 = M2 ∠𝜃2 can be carried out as

Z = Z1 ∗ Z2

= M1 ∠𝜃1 ∗ M2 ∠𝜃2
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= M1 ej∠𝜃1 ∗ M2 ej∠𝜃2

= (M1 M2) ej∠(𝜃1+𝜃2)

= (M1 M2) ∠(𝜃1 + 𝜃2)

= |Z| ∠𝜃.

Therefore, the magnitude |Z| of the multiplication of complex numbers given in
polar form is obtained by multiplying the magnitudes of complex numbers being
multiplied and the angle ∠𝜃 of the resultant is the sum of the angles of the complex
numbers being multiplied. Note that this procedure is not restricted to multiplica-
tion of two numbers only; it can be used for multiplying any number of complex
numbers.

Division of Complex Number in Polar Form: The division of the two complex num-
bers Z1 and Z2 in the polar form can be carried out as

Z =
Z1

Z2

=
M1 ∠𝜃1

M2 ∠𝜃2

=
M1 ej∠𝜃1

M2 ej∠𝜃2

=
M1

M2
ej (∠(𝜃1−𝜃2))

=
M1

M2
∠(𝜃1 − 𝜃2)

= |Z| ∠𝜃.

Therefore, the magnitude |Z| of the division of two complex numbers given in polar
form is obtained by dividing the magnitudes of dividend complex number Z1 by the
magnitude of divisor complex number Z2. The angle ∠𝜃 of the resultant is obtained
by subtracting the angle of the divisor complex numbers Z2 from the angle of the
dividend complex number Z1. Note that if the dividend or the divisor are the product
of complex numbers, the product of all the dividend and the divisor complex numbers
should be obtained first, and then the division of the two complex numbers should
be carried out.

5.6 ARMATURE CURRENT IN A DC MOTOR

The winding of an electric motor shown in Fig. 5.7 has a resistance of R = 10 Ω and
an inductance of L = 25 mH. If the motor is connected to a 110 V, 60 Hz voltage
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source as shown, find the current I = V
Z

A flowing through the winding of the motor,
where Z = ZR + ZL and V = 110 V.

I

Motor

R

L

110 V 

60 Hz

Figure 5.7 Voltage applied to a motor.

The total impedance of the winding of the motor is given as Z = ZR + ZL, where
ZR = R = 10 + j 0 Ω and ZL = j 𝜔 L = 0 + j 9.426 Ω. Therefore, Z = (10 + j 0) +
(0 + j 9.426) = 10 + j 9.426 Ω, and the current flowing through the winding of the
motor is

I = V
Z

= 110
10 + j 9.426

=
110 + j 0

10 + j 9.426
A. (5.3)

Since it is easier to multiply and divide in exponential or polar forms, the current
in equation (5.3) will be calculated in the polar/exponential form. Converting the
numerator and denominator in equation (5.3) to exponential form yields

I = 110 e j0∘√
102 + 9.4262 e j atan2(9.426,10)

= 110 e j0∘

13.74 e j 43.3∘

= 110 e j(0∘−43.3∘)
13.74

= 8.01 e− j 43.3∘

= 8.01 ∠−43.3∘ A. (5.4)

Therefore, the current flowing through the winding of the motor is 8.01 A. The pha-
sor diagram (vector diagram) showing the voltage and current vectors is shown in
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Fig. 5.8. It can be seen from Fig. 5.8 that the current is lagging (negative angle) the
voltage by 43.3∘. The polar form of the current given in equation (5.4) can be con-
verted to rectangular form as

I = 8.01 e− j 43.3∘

= 8.01 (cos 43.3∘ − j sin 43.3∘)

= 5.83 − j 5.49 A.

Note: In general, e ± 𝜃 = cos 𝜃 ± j sin 𝜃 requires 𝜃 in radians. However, converting to
radians is unnecessary for the purpose of multiplying and dividing complex numbers.

43.3º

110 V

8.01 A

V 

I

Figure 5.8 The current and voltage vector.

5.7 FURTHER EXAMPLES OF COMPLEX NUMBERS IN
ELECTRIC CIRCUITS

Example
5-1

A current, I, flowing through the RL circuit shown in Fig. 5.9 produces a voltage,
V = I Z, where Z = R + j XL. Find V if I = 0.1 ∠30∘ A.

R = 100 Ω 

XL = 30 Ω
V↑I

−

+

Figure 5.9 Current flowing through an RL circuit.

Solution The impedance Z of the RL circuit can be calculated as

Z = R + j XL Ω

= 100 + j 30 Ω.

The voltage V = I Z = (0.1 ∠30∘)(100 + j 30) V will be calculated by multiply-
ing the two complex numbers using their rectangular forms as well as their
polar/exponential forms to show that it is much easier to multiply complex
numbers using the polar/exponential forms.
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Rectangular Form Polar/Exponential Form

I = 0.1 ∠30∘ I = 0.1 ∠30∘ = 0.1 e j 30∘A

= 0.1 (cos 30∘ + j sin 30∘) Z = 100 + j 30

= 0.0866 + j 0.05 A =
√

1002 + 302 ∠atan2 (30, 100)

Z = 100 + j 30 Ω = 104.4 ∠16.7∘ = 104.4 e j 16.7∘ Ω

V = I Z V = I Z

= (0.0866 + j 0.05)(100 + j 30) = (0.1 e j 30∘ )(104.4 e j 16.7∘ )

= 8.66 + j 2.598 + j 5 + 1.5 j2 = (10.44) e j(30∘+16.7∘)

= 8.66 + j 2.598 + j 5 + 1.5 (−1) = (10.44) ∠46.7∘ V

= 7.16 + j 7.598

= 10.44 ∠46.7∘ V

Example
5-2

In the voltage divider circuit shown in Fig. 5.10, the impedance of the resistor
is given by Z1 = R. The total impedance of the inductor and capacitor in series
is given by Z2 = j XL + 1

j
XC, where j =

√
−1. Suppose R = 10, XL = 10, and

XC = 20, all measured in ohms:

(a) Express the impedance Z1 and Z2 in both rectangular and polar forms.

(b) Suppose the source voltage is V = 100
√

2∠45∘ V. Compute the voltage V1
given by

V1 =
Z2

Z1 + Z2
V. (5.5)

V

R

C

L

V1

+

−

Figure 5.10 Voltage divider circuit for example 5-2.
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Solution (a) The impedance Z1 can be written in rectangular form as

Z1 = R

= 10 + j 0 Ω.

The impedance Z1 can be written in polar form as

Z1 =
√

102 + 02 ∠atan2(0, 10)

= 10∠0∘ Ω.

The impedance Z2 can be written in rectangular form as

Z2 = j XL + 1
j

XC

= j 10 + 1
j

20
(

j
j

)
= j 10 − j 20

= −j 10

= 0 − j 10 Ω.

The impedance Z2 can be written in polar form as

Z2 =
√

02 + (−10)2 ∠atan2(−10, 0)

= 10∠−90∘ Ω.

(b)
V1 =

Z2

Z1 + Z2
V

=
(

10∠−90∘
(10 + j 0) + (0 − j 10)

)
(100

√
2∠45∘)

=
(

10∠−90∘
10 − j 10

)
(100

√
2∠45∘)

=

(
10∠−90∘

10
√

2∠−45∘

)
(100

√
2∠45∘)

=

(
1√
2
∠−45∘

)
(100

√
2∠45∘)

= 100∠0∘ V

= 100 + j 0 V.
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Example
5-3

In the circuit shown in Fig. 5.11, the impedances of the various components are
ZR = R, ZL = j XL, and ZC = 1

j
XC, where j =

√
−1. Suppose R = 10, XL = 10,

and XC = 10, all measured in ohms.

(a) Express the total impedance Z = ZC + ZR ZL
ZR+ZL

in both rectangular and polar
forms.

(b) Suppose a voltage V = 50
√

2∠45∘ V is applied to the circuit shown in Fig. 5.11.
Find the current I flowing through the circuit if I is given by

I = V
Z

(5.6)

Solution (a) The impedance ZR can be written in rectangular and polar forms as

ZR = R

= 10 + j 0 Ω

= 10∠0∘ Ω.

C

Z R L

Figure 5.11 Total impedance of the circuit for example 5-3.

The impedance ZL can be written in rectangular and polar forms as

ZL = j XL

= 0 + j 10 Ω

= 10∠90∘ Ω.

The impedance ZC can be written in rectangular and polar forms as

ZC = 1
j

XC

= −j XC

= 0 − j 10 Ω

= 10∠−90∘ Ω.
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The total impedance can now be calculated as

Z = ZC +
ZR ZL

ZR + ZL

= 0 − j 10 + (10∠0∘) (10∠90∘)
(10 + j 0) + (0 + j 10)

= 0 − j 10 + 100∠90∘
(10 + j 10)

= 0 − j 10 + 100∠90∘

10
√

2∠45∘

= 0 − j 10 + 5
√

2∠45∘

= 0 − j 10 + 5 + j 5

= 5 − j 5 Ω

= 5
√

2∠−45∘ Ω.

(b)
I = V

Z

=
50

√
2∠45∘

5
√

2∠−45∘

= 10∠90∘ A

= 0 + j 10 A.

Example
5-4

A sinusoidal voltage source vs = 100 cos(100 t + 45∘) V is applied to a series RLC
circuit. Write the voltage source vs in the exponential form.

Solution Since cos(𝜃) = Re(ej 𝜃), the voltage source vs can be written in the exponential
form as

vs = Re(100 ej(100 t+45∘)) V.
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Example
5-5

A sinusoidal current source is = 100 sin(120𝜋 t + 60∘) mA is applied to a parallel
RL circuit. Write the current source is in the exponential form.

Solution Since sin(𝜃) = Im(ej 𝜃), the current source is can be written in the exponential
form as

is = Im(100 ej(120𝜋 t+60∘)) mA.

5.8 COMPLEX CONJUGATE

The complex conjugate of a complex number z = a + j b is

z∗ = a − j b.

The multiplication of a complex number by its conjugate results in a real number
that is the square of the magnitude of the complex number:

z z∗ = (a + j (b)(a − j (b)

= a2 − j a b + j a b − j2 b2

= a2 − (−1) b2

= a2 + b2.

Also,

|z|2 = (
√

a2 + b2)2

= a2 + b2.

Therefore, z z∗ = |z|2 = a2 + b2.

Example
5-6

If z = 3 + j 4, find z z∗ using the rectangular and polar forms.

Solution The conjugate of the complex number z = 3 + j 4 is given by

z∗ = 3 − j 4.

Calculating z z∗ using the rectangular form yields

z z∗ = (3 + j 4)(3 − j 4)

= 32 − j (3)(4) + j (3)(4) − j2 42

= 32 − (−1) 42
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= 32 + 42

= 25.

Therefore, z z∗ = 25. Note: |z|2 = (
√

32 + 42)2 = 25. Now, calculating z z∗ using the
polar form, we have

z = 3 + j 4

z =
√

32 + 42 ∠atan2(4, 3)

z = 5 ∠53.1∘

z∗ = 3 − j 4

z∗ =
√

32 + (−4)2 ∠atan2(−4, 3)

z∗ = 5 ∠−53.1∘

z z∗ = (5 ∠53.1∘)(5 ∠−53.1∘)

= (5)(5)∠(53.1∘ − 53.1∘)

= 25 ∠0∘

= 25.

Therefore, z z∗ = 25. Note that the complex conjugate of a complex number in
polar form has the same magnitude as the complex number, but the angle of the
complex conjugate is the negative of the angle of the complex number.

PROBLEMS

5-1. In the series RL circuit shown in Fig. P5.1,
voltage VL leads voltage VR by 90∘ (i.e.,
if the angle of VR is 0∘, the angle of VL
is 90∘). Assume VR = 9 ∠0∘ V and VL =
9 ∠90∘ V.
(a) Write VR and VL in rectangular form.
(b) Determine V = VR + VL in both its

rectangular and polar forms.
(c) Write the real and imaginary parts

of V.

+ 

VR

−

+ 

VL

−

L

R

V

Figure P5.1 A series RL circuit for problem P5-1.
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5-2. Repeat problem P5-1 if VR = 10 ∠−45∘
V and VL = 5 ∠45∘ V.

5-3. Repeat problem P5-1 if VR = 12 ∠−30∘
V and VL = 6 ∠60∘ V.

5-4. In the RC circuit shown in Fig. P5.4, volt-
age VC lags voltage VR by 90∘ (i.e., if the
angle of VR is 0∘, the angle of VC is −90∘).
Assume VR = 1 ∠0∘ V and VC = 1 ∠−90∘
V.
(a) Write VR and VC in rectangular form.
(b) Determine V = VR + VC in both its

rectangular and polar forms.
(c) Write the real and imaginary parts

of V.

+

VR

−

+
VC

−

C

R

V

Figure P5.4 RC circuit for problem P5-4.

5-5. Repeat problem P5-4 if VR = 15 ∠27.4∘
V and VC = 5 ∠−62.6∘ V.

5-6. Repeat problem P5-4 if VR = 10 ∠60∘ V
and VC = 17.32 ∠−30∘ V.

5-7. In the parallel RL circuit shown in Fig.
P5.7, the total current I is the sum of
the currents flowing through the resistor
(IR) and the inductor (IL). Assume iR =
50 ∠0∘ mA and iL = 100 ∠−90∘ mA.
(a) Write IR and IL in rectangular form.
(b) Determine I = IR + IL in both its

rectangular and polar forms.
(c) Write the real and imaginary parts

of I.

IL IR

RLI ↑

Figure P5.7 A parallel RL circuit for problem
P5-7.

5-8. Repeat problem P5-7 if IR = 0.707 ∠45∘
A and IL = 0.707 ∠−45∘ A.

5-9. Repeat problem P5-7 if IR = 173.2 ∠30∘
𝜇A and IL = 100 ∠−60∘ 𝜇A.

5-10. In the parallel RC circuit shown in Fig.
P5.10, the total current I is the sum of
the currents flowing through the resistor
(IR) and the capacitor (IC). Assume IR =
83.2 ∠−33.7∘ mA and IC = 55.5 ∠56.3∘
mA.
(a) Write IR and IL in rectangular form.
(b) Determine I = IR + IL in both its

rectangular and polar forms.
(c) Write the real and imaginary parts

of I.

IC
IR

C RI ↑

Figure P5.10 A parallel RC circuit for problem
P5-10.

5-11. Repeat problem P5-10 if IR = 1.5 ∠0∘
mA and IC = 0.6 ∠90∘ mA.

5-12. Repeat problem P5-10 if IR =
0.929 ∠−21.8∘ A and IC = 0.37 ∠68.2∘ A.
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5-13. The output voltage across the capacitor
in a series RLC circuit is measured by an
oscilloscope as vo(t) = 5 cos(5𝜋 t − 60∘)
V. Write the voltage vo(t) in the exponen-
tial form.

5-14. The current flowing through the resis-
tor in a parallel RL circuit is given as
iR(t) = 5 sin(5𝜋 t + 30∘) mA. Write the
current iR(t) in the exponential form.

5-15. A resistor, capacitor, and an inductor
are connected in series as shown in Fig.
P5.15. The total impedance of the cir-
cuit is Z = ZR + ZL + ZC, where ZR =
R Ω, ZL = j𝜔L Ω, and ZC = 1

j 𝜔 C
Ω. For

a particular design R = 100 Ω, L = 530
mH, C = 26.5 𝜇F, and 𝜔 = 120 𝜋 rad/s.
(a) Determine the total impedance Z in

rectangular form.
(b) Determine the total impedance Z in

polar form.
(c) Determine the complex conjugate Z∗

and compute the product Z Z∗.

L

R

C

Figure P5.15 RLC circuit for problem P5-15.

5-16. Two circuit elements are connected
in series as shown in Fig. P5.16. The
impedance of the first circuit element
is Z1 = R1 + j XL1

. The impedance of
the second circuit element is Z2 = R2 +
j XL2

, where R1 = 10 Ω, R2 = 5 Ω, XL1
=

25 Ω, and XL2
= 15 Ω.

(a) Determine the total impedance, Z =
Z1 + Z2.

(b) Determine the magnitude and phase
of the total impedance; in other
words, find Z = |Z| ∠𝜃.

Z1 Z2

R1 R2XL1
XL2

Figure P5.16 Two circuit elements in series for
problem P5-16.

5-17. An RC circuit is subjected to an alter-
nating voltage source V as shown in Fig.
P5.17. The relationship between the volt-
age and current is V = I Z, where Z =
R − j XC. For a particular design, R = 8 Ω
and XC = 4 Ω.
(a) Find I if V = 100 ∠60∘ V.
(b) Find V if I = 5.0 ∠−45∘ A.

I

R

C

V

Figure P5.17 RC circuit subjected to an alternating
voltage source for problem P5-17.

5-18. A series–parallel electric circuit con-
sists of the components shown in Fig.
P5.18. The values of the impedance

of the two components are Z1 =
−j
𝜔 C

and Z2 = R + j𝜔L, where C = 5 𝜇F, R =
100 Ω, L = 0.15 H, 𝜔 = 120𝜋 rad/s, and
j =

√
−1.

(a) Write Z1 and Z2 as complex numbers
in both their rectangular and polar
forms.

(b) Write down the complex conjugate of
Z2 and calculate the product Z2 Z∗

2.
(c) Calculate the total impedance Z =

Z1 Z2
Z1+Z2

of the circuit. Write the total
impedance in both its rectangular
and polar forms.
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Z1 Z2

R

L

C

Figure P5.18 Impedance of series-parallel
combination of circuit elements for problem P5-18.

5-19. The low-pass crossover circuit shown
in Fig. P5.19 consists of a resistor R,
an inductor L, and a capacitor C. The
impedance of the resistor is Z1 = R, the
impedance of the inductor is Z2 = j𝜔L,
and the impedance of the capacitor is
Z3 = 1∕(j𝜔C). Suppose R = 25 Ω, L = 25
mH, C = 5 𝜇F, and 𝜔 = 1000𝜋 rad/s.
(a) Express the impedances Z1, Z2, and

Z3 in both their rectangular and polar
forms.

(b) Compute the transfer function H of

the crossover H =
Z2 + Z3

Z1 + Z2 + Z3
and

express your result in both its rectan-
gular and polar forms.

(c) Determine the complex conju-
gate H∗ and compute the product
H ⋅ H∗.

L

R

C

Figure P5.19 Low-pass crossover RLC circuit.

5-20. An electric circuit consists of two com-
ponents as shown in Fig. P5.20. The
values of the impedance of the two com-
ponents are Z1 = R1 + j XL and Z2 =
R2 − j XC, where R1 = 75 Ω, XL = 100 Ω,
R2 = 50 Ω, and XC = 125 Ω.
(a) Write Z1 and Z2 as complex numbers

in both their rectangular and polar
forms.

(b) Determine the complex conjugate of
Z2 and compute the product Z2 Z∗

2.
(c) Compute the total impedance of the

two components Z =
Z1 Z2

Z1 + Z2
and

express the result in both rectangular
and polar forms.

Z1 Z2

R1 R2

XL XC

Figure P5.20 Impedance of elements connected in
parallel for problem P5-20.

5-21. All inductors have an internal winding
resistance Rw, which accounts for the
imperfect nature of the conductors used
in their construction. In practice, this
modifies the expression for the inductor
impedance as ZL = Rw + j𝜔L. Consider
an RLC series circuit excited by a 100
V, 50 Hz AC voltage source, as shown
in Fig. P5.21. The impedances of the
various components are ZR = R Ω, ZL =
Rw + j𝜔L Ω, and ZC = 1∕(j𝜔C) Ω, where
R = 100 Ω, 𝜔 = 100𝜋 rad/s, C = 20∕𝜋 𝜇F,
Rw = 10 Ω, and L = 20∕𝜋 mH.
(a) Express the impedances ZC, ZL, and

ZR in both their rectangular and
polar forms.
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(b) Suppose ZR = 100∠0∘ Ω, ZL =
10.2∠11.3∘ Ω, and ZC = 500∠−90∘ Ω.
Determine the current I =

100
ZC + ZL + ZR

, and express your

result in both its rectangular and
polar forms.

(c) Assume now that I = 0.196∠77.5∘ A.
Determine the complex power P =
VR I∗, given that VR = 19.6∠77.5∘ V
and I∗ is the complex conjugate of I.
Express the result in both its rectan-
gular and polar forms.

I

Rw

V
Inductor

L

C

R

Figure P5.21 RLC circuit for problem P5-21.

5-22. A sinusoidal voltage source V =
110

√
2 ∠−23.2∘ V is applied to an cir-

cuit shown in Fig. P5.22, where Z1 =
R1 − j XC Ω and Z2 = R2 + j XL Ω. The
voltage V1 is given by

V1 =
Z2

Z1 + Z2
V.

Z1

R1 C

V Z2

+

R2 

V1 

L

−

Figure P5.22 Voltage division for problem P5-22.

Assuming that R1 = 50 Ω, R2 = 100 Ω,
XL = 250 Ω, and XC = 100 Ω,

(a) Write Z1 and Z2 as complex numbers
in polar form.

(b) Determine V1 in both rectangular
and polar forms.

(c) Determine the complex conjugate
of Z1 and compute the product
Z1 Z∗

1
.

5-23. The circuit shown in Fig. P5.23 consists
of parallel combinations of R, L, and C
with impedances Z1 and Z2. One paral-
lel branch consists of a resistor R1 and
a capacitor C and the other branch con-
sists of a resistor R2 and an inductor L.
The impedance of the inductor is ZL =
j𝜔L and the impedance of the capacitor
is ZC = 1∕(j𝜔C). Suppose L = 100 mH,
C = 20 𝜇F, and 𝜔 = 500 rad/s.
(a) Express the impedances ZL and ZC

in both their rectangular and polar
forms.

(b) If Z1 = 50 − j100 Ω and Z2 = 100 +
j50 Ω, compute the total impedance

Ztot =
Z1Z2

Z1 + Z2
of the circuit. Express

your result in both its rectangular and
polar forms.

Z1 Z2
I

+ R1 R2 
V

−

C L

Figure P5.23 Parallel combination of R, L, and C
for problem P5-23.

5-24. In the circuit shown in Fig. P5.24,
the impedances of the various compo-
nents are ZR = R Ω, ZL = j XL Ω, and

ZC = 1
j

XC, where j =
√
−1. Suppose

R = 120 Ω, XL = 120
√

3 Ω, and XC =
1

50
√

3
Ω.
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(a) Express the impedance ZR, ZL, and
ZC as complex numbers in both rect-
angular and polar forms.

(b) Now, suppose that the total
impedance of the circuit is Z =
ZC +

ZR ZL

ZR + ZL
. Determine the total

impedance and express the result in
both rectangular and polar forms.

(c) Determine the complex conjugate of
Z and compute the product Z Z∗.

Z R

C

L

Figure P5.24 A capacitor connected in series with
a parallel combination of resistor and inductor for
problem P5-24.

5-25. An electric circuit consists of the compo-
nents shown in Fig. P5.25, with Z1 = R1,
Z2 = R2 + j𝜔L, and Z3 = R3 + (1∕j 𝜔C).

R1 I

I

+
V

−

R3 R2

C L

+   
V Z

−

Figure P5.25 Series–parallel circuit for problem
P5-25.

(a) Given R1 = 25 Ω, R2 = 35 Ω, R3 =
45 Ω, L = 200 mH, C = 200 𝜇F, and
𝜔 = 500 rad/s, write Z1, Z2, and Z3 as
complex numbers in both their rect-
angular and polar forms

(b) Determine the total impedance Z =
Z1 +

Z2 Z3

Z2 + Z3
and express your result

in both its rectangular and polar
forms.

5-26. In the RL circuit shown in Fig. P5.26, the
impedances of R and L are given as ZR =
R Ω and ZC = j XL Ω, where j =

√
−1.

Suppose R = 100 Ω and XL = 50 Ω.
(a) Express the impedances ZR and ZL

as complex numbers in both rectan-
gular and polar forms.

(b) Find the total impedance Z = ZR +
ZL as a complex number in both rect-
angular and polar forms.

(c) If V = 100∠0∘ V, find the current I =
V
Z

as a complex number in both rect-
angular and polar forms.

(d) Knowing the current in part (c), find
the voltage phasors VR = I ZR and
VL = I ZL in both rectangular and
polar forms.

(e) Show that the KVL is satisfied for the
circuit shown in Fig. P5.26; in other
words, show V = VR + VL.

I

R

V

L

Figure P5.26 An RL circuit for problem P5-25.

5-27. The impedance of an electric circuit with
a resistor, inductor, and capacitor con-
nected in series is given by Z = R +
j XL − j XC Ω, where R = 150 Ω, XL =
300 Ω, and XC = 250 Ω.
(a) Find the impedance Z in both its rect-

angular and polar forms.
(b) Given V = I ∗ Z, find the current I if

V = 110∠𝜋 volts and Z is as found in
part (a). Express your result in both
its rectangular and polar forms.

(c) Write down the complex conjugate
Z∗ and compute the product Z ⋅ Z∗.
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V

I

R

C

L

Figure P5.27 Series RLC circuit for problem
P5-27.

5-28. In the current divider circuit shown in Fig.
P5.28, the sum of the current phasors I1
and I2 is equal to the total current pha-
sor I (i.e., I = I1 + I2). Suppose I1 = 1∠0∘
and I2 = 1∠90∘, both measured in mA.

I 
+

I2  I1

+ +
V 

VC R VRC 
− −

−

Figure P5.28 A current divider circuit for
problems P5-28 and P5-29.

(a) Write I1 and I2 in rectangular form.
(b) Determine the total current phasor

I in both rectangular and polar forms.
(c) Suppose ZR = 1000 Ω and ZC =

103

j
Ω. Write VR and VC as com-

plex numbers in both rectangular
and polar forms if VR = I1 ZR and
VC = I2 ZC.

5-29. In the current divider circuit shown in Fig.
P5.28, the currents flowing through the
resistor I1 and capacitor I2 are given by

I1 =
ZC

ZR + ZC
I

I2 =
ZR

ZR + ZC
I

where ZR = RΩ is the impedance of the

resistor and ZC =
XC

j
Ω is the impedance

of the capacitor.
(a) If R = 2 kΩ and XC = 103 Ω, express

ZR and ZC as complex numbers in
both rectangular and polar forms.

(b) If I = 5 mA, determine I1 and I2 in
both rectangular and polar forms.

(c) Show I = I1 + I2.

5-30. In the current divider circuit shown in Fig.
P5.30, the sum of the current phasors I1
and I2 is equal to the total current phasor
I (i.e., I = I1 + I2).

R

+ 
I2 I1
+ +
VL VR

− −

−

I

V L

Figure P5.30 A current divider circuit for
problems P5-30 and P5-31.

Suppose I1 =
√

2∠45∘ and I2 =
√

2∠
−45∘, both measured in mA.
(a) Write I1 and I2 in rectangular form.
(b) Determine the total current phasor

I in both rectangular and polar
forms.

(c) Suppose ZR = 1000Ω and ZL =
j 1000Ω. Write VR and VL as com-
plex numbers in both rectangular
and polar forms if VR = I1 ZR and
VL = I2 ZL.

5-31. In the current divider circuit shown in Fig.
P5.30, the currents flowing through the
resistor I1 and inductor I2 are given by

I1 =
ZL

ZR + ZL
I

I2 =
ZR

ZR + ZL
I
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where ZR = RΩ is the impedance of the
resistor and ZL = j XLΩ is the impedance
of the inductor.
(a) If R = 2 kΩ and XL = 103 Ω, express

ZR and ZL as complex numbers in
both rectangular and polar forms.

(b) If I = 5 mA, determine I1 and I2 in
both rectangular and polar forms.

(c) Show I = I1 + I2.

5-32. In the OP-AMP circuit shown in Fig.
P5.32, the output voltage Vo is given by

Vo = −
ZC

ZR
Vin

where ZR = R Ω is the impedance of
the resistor and ZC = −j XC Ω is the
impedance of the capacitor.
(a) If R = 2 kΩ and XC = 1 kΩ, express

ZR and ZC as complex numbers in
both rectangular and polar forms.

(b) If Vin = 10∠0∘ V, determine Vo in
both rectangular and polar forms.

Vin 

C

R
+Vcc

−
+

Vo

+

−

−

Vcc

−

+

Figure P5.32 An OP-AMP circuit for problem
P5-32.

5-33. In the OP-AMP circuit shown in Fig.
P5.33, the output voltage Vo is given by

Vo = −
Zo

Zin
Vin

where Zo =
R2

Z1
Ω is the impedance of

the resistor R2 connected in parallel with
the capacitor C2, Zin = Z2∕(j𝜔C1) is the

impedance of the resistor R1 connected in
series with capacitor C1, Z1 = 1 + j𝜔R2C2
and Z2 = 1 + j𝜔R1C1 Ω.

Vo

C2

R2

R1 C1 +Vcc

−VccVin

−

−

+

+

+ 

−

Figure P5.33 An OP-AMP circuit for problem
P5-33.

Given that R1 = 5 kΩ, R2 = 10 kΩ,
C1 = C2 = 1 𝜇F, 𝜔 = 100 rad/s, and Vin =
10
√

2 V,
(a) Determine Z1 and Zo in both rectan-

gular and polar forms.
(b) Determine Z2 and Zin in both rectan-

gular and polar forms.
(c) Now, determine Vo in both rectangu-

lar and polar forms.

5-34. In the OP-AMP circuit shown in Fig.
P5.34, the output voltage Vo is given by

Vo = −
ZR2

+ ZC

ZR1

Vin

where ZR1
= R1 Ω is the impedance

of the resistor R1, ZR2
= R2 Ω is the

impedance of the resistor R2, and ZC =
−j XC Ω is the impedance of the capaci-
tor.
(a) If R1 = 1 kΩ, R2 = 2 kΩ, and XC =

2 kΩ, express ZR1
, ZR2

, and ZC as
complex numbers in both rectangu-
lar and polar forms.

(b) If Vin = 2∠45∘ V, determine Vo in
both rectangular and polar forms.
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Vo

R2

R1

−
+

C

+ Vcc

+

Vin   
− Vcc

−

−
+

Figure P5.34 An OP-AMP circuit for problem
P5-34.

5-35. A two-branch circuit consists of the com-
ponents show in Fig. P5.35, where ZR = R
for both resistors, ZL = j𝜔L, and ZC =

1
j𝜔C

, where 𝜔 = 2𝜋f .
(a) Given C = 1.2 𝜇F, L = 3 mH, R = 50

Ω, and f = 1000 Hz, write ZR, ZL,
and ZC in both their rectangular and
polar forms.

(b) The impedance of one branch of the
circuit is Z1 = ZC + ZR, while the
impedance of the other branch is
Z2 = ZL + ZR. Find the total equiv-
alent impedance of the circuit Z =

Z1Z2

Z1 + Z2
and express your result in

both its rectangular and polar forms.

Z2 Z1

L C
Z

R R

Figure P5.35 Two-branch circuit for problem
P5.35.

5-36. In the OP-AMP circuit shown in Fig.
P5.36, the output voltage Vo is given by

Vo = −
ZR2

+ ZC2

ZR1
+ ZC1

Vin

where ZR1
= R1 Ω is the impedance

of the resistor R1, ZR2
= R2 Ω is the

impedance of the resistor R2, ZC1
=

−j XC1
Ω is the impedance of the capac-

itor C1, and ZC2
= −j XC2

Ω is the
impedance of the capacitor C2.

Vo

R2
C2

R1   C1
−

−
Vin

+
+

+ 

−Vcc

+Vcc

−

Figure P5.36 An OP-AMP circuit for problem
P5-35.

(a) If R1 = 10 kΩ, R2 = 5 kΩ, XC1
=

2.5 kΩ, and XC2
= 5 kΩ, express

ZR1
, ZR2

, ZC1
, and ZC2

as complex
numbers in both rectangular and
polar forms.

(b) If Vin = 1.5∠0∘ V, determine Vo in
both rectangular and polar forms.

5-37. A voltage divider circuit shown in Fig.
P5.37 consists of a resistor R, an induc-
tor L and a capacitor C. The impedance
of the resistor is Z1 = R, the impedance
of the inductor is Z2 = j𝜔L, and the
impedance of the capacitor is Z3 =
1∕(j𝜔C).

−

V

R

C

L
a

+

b

Vab

Figure P5.37 A voltage divider circuit for problem
P5-37.

(a) Suppose V = 110 V at f = 60 Hz, R =
200 Ω, L = 20∕𝜋 mH, C = 100∕𝜋 𝜇F,
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and 𝜔 = 2𝜋f rad/s. Write Z1, Z2, and
Z3 as complex numbers in both their
rectangular and polar forms.

(b) Now assume that Z1 = 100∠0∘ = 100
+ j0, Z2 = 10∠90∘ = 0 + j10, Z3 =
110∠−90∘ = 0 − j110, and V =
110∠0∘ V. Determine the voltage

Vab =
Z2

Z1 + Z2 + Z3
V and express

your result in both its rectangular
and polar forms.

(c) Assume now that the current in the
circuit is I = 0.778∠45∘ A. If Vab =
−5.5 + j5.5 V and I∗ is the com-
plex conjugate of I, find the com-
plex power P = Vab I∗ and express
the result in both its rectangular and
polar forms.

5-38. The Delta-to-Yee (Δ-Y) and Yee-to-
Delta (Y-Δ) conversions are used in
electrical circuits to find the equiva-
lent impedances of complex circuits. In
the circuit shown in Fig. P5.38, the
impedances Za, Zb, and Zc connected in
the Delta interconnection can be con-
verted into their equivalent impedances
Z1, Z2, and Z3 connected in the Yee inter-
connection. The impedances Z1, Z2, and
Z3 can be written in term of impedances
Za, Zb, and Zc as

Z1 =
Za Zb

Za + Zb + Zc

Z2 =
Za Zc

Za + Zb + Zc

Z3 =
Zc Zb

Za + Zb + Zc
.

(a) If Za = 10 Ω, Zb = j 20 Ω, and Zc =
20 + j 10 Ω, express Za, Zb, and Zc as
complex numbers in both rectangu-
lar and polar forms.

(b) Determine Z1, Z2, and Z3 in both
rectangular and polar forms.

Z3

Zb Zc

Z1
Z2

Za

Figure P5.38 Impedances connected in Delta and
Y interconnections.

5-39. The impedances of the components in a
parallel RLC circuit can be combined and
represented as a single impedance Z as
shown in Fig. P5.39. Suppose R = 50 Ω,
XL = 30 Ω, and XC = 1∕40 Ω. Given that
ZR = R, ZL = jXL, and ZC = 1∕(jXC),
(a) Write ZR, ZL, and ZC in both their

rectangular and polar forms.
(b) Find the total equivalent

impedance of the circuit Z =
ZR ZLZC

ZL ZC + ZRZL + ZRZC
, and

express your result in both its rect-
angular and polar forms.

V                      R        CL

Figure P5.39 A voltage divider circuit for problem
P5-39.

5-40. In the circuit shown in Fig. P5.38, the
impedances Z1, Z2, and Z3 connected in
the Yee interconnection can be converted
into their equivalent impedances Za, Zb,
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and Zc connected in the Delta intercon-
nection as

Za =
Z1 Z2 + Z2 Z3 + Z3 Z1

Z3

Zb =
Z1 Z2 + Z2 Z3 + Z3 Z1

Z2

Zc =
Z1 Z2 + Z2 Z3 + Z3 Z1

Z1
.

(a) If Z1 = 3.33 + j 3.33 Ω, Z2 = 5.0 −
j 1.66 Ω and Z3 = 3.5 + j 10.6 Ω,
express Z1, Z2, and Z3 as complex
numbers in polar form.

(b) Determine Za, Zb, and Zc in both
rectangular and polar forms.
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CHAPTER
6

Sinusoids in
Engineering

A sinusoid is a signal that describes a smooth repetitive motion of an object that
oscillates at a constant rate (frequency) about an equilibrium point. The sinusoid
has the form of a sine (sin) or a cosine (cos) function (discussed in Chapter 3) and
has applications in all engineering disciplines. These functions are the most impor-
tant signals because all others signals can be constructed from sine and cosine signals.
A few examples of a sinusoid are the motion of a one-link planar robot rotating at
a constant rate, the oscillation of an undamped spring–mass system, and the volt-
age waveform of an electric power source. For example, the frequency of the voltage
waveform associated with electrical power in North America is 60 cycles per sec-
ond (Hz), whereas in many other parts of the world this frequency is 50 Hz. In this
chapter, the example of a one-link robot rotating at a constant rate will be used to
develop the general form of a sinusoid and explain its amplitude, frequency (both
linear and angular), phase angle, and phase shift. The sum of sinusoids of the same
frequency will also be explained in the context of both electrical and mechanical
systems.

6.1 ONE-LINK PLANAR ROBOT AS A SINUSOID

A one-link planar robot of length l and angle 𝜃 is shown in Fig. 6.1. It was shown in
Chapter 3 that the tip of the robot has coordinates x = l cos 𝜃 and y = l sin 𝜃. Varying
𝜃 from 0 to 2𝜋 radians and assuming l = 1 (l has units of x and y), the plots of y =
l sin 𝜃 and x = l cos 𝜃 are shown in Figs. 6.2 and 6.3, respectively.

y

x

y

x

l
θ

Figure 6.1 A one-link planar robot.

160
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2

0

1

1

0 3 2
2

, rad

sin θ

θπ π π π

Figure 6.2 y-coordinate of one-link robot with l = 1 (sine function).

It can be seen from Fig. 6.2 that sin 𝜃 goes from 0 (for 𝜃 = 0) to 1 (for 𝜃 = 𝜋∕2) and
back to 0 (for 𝜃 = 𝜋) to −1 (for 𝜃 = 3𝜋∕2) back to 0 (for 𝜃 = 2𝜋), thus completing
one full cycle. From Fig. 6.3, it can be seen that cos 𝜃 goes from 1 (for 𝜃 = 0) to 0
(for 𝜃 = 𝜋∕2) to −1 (for 𝜃 = 𝜋) to 0 (for 𝜃 = 3𝜋∕2) and back to 1 (for 𝜃 = 2𝜋), thus
completing one full cycle. Note that the minimum value of the sin and cos functions
is −1 and the maximum value of the sin and cos functions is 1.

, rad
0

0

1

1

2
3 2
2

cos θ

π π π π θ

Figure 6.3 x-coordinate of one-link robot with l = 1 (cosine function).
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Figures 6.4 and 6.5 show two cycles of the sine and cosine functions, respectively, and
it can be seen from these figures that sin(𝜃 + 2𝜋) = sin(𝜃) and cos(𝜃 + 2𝜋) = cos(𝜃),
for 0 ≤ 𝜃 ≤ 2𝜋. Similarly, the plot of sine and cosine functions will complete another
cycle from 4𝜋 to 6𝜋 and so on for every 2𝜋. Thus, both the sine and cosine functions
are called periodic functions with period T = 2𝜋 rad. Since 𝜋 = 180∘, the period of
the sine and cosine functions can also be written as 360∘.

, rad
0

0

1

1

2
432 3

2
7
2

3
2

sin θ

π π π π π π π π θ

Figure 6.4 Two cycles of the sine function.

, rad
0

0

1

1

2
433

2
7
2

23
2

cos θ

π π π π π π π π θ

Figure 6.5 Two cycles of the cosine function.
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6.2 ANGULAR MOTION OF THE ONE-LINK PLANAR ROBOT

Suppose now that the one-link planar robot shown in Fig. 6.1 is rotating with an
angular frequency 𝜔, as shown in Fig. 6.6.

l

x

y

x

y

θ ω t

Figure 6.6 A one-link planar robot rotating at a constant angular frequency 𝜔.

The angle traveled in time t is given by 𝜃 = 𝜔 t. Therefore, y(t) = l sin(𝜃) = l sin(𝜔 t)
and x(t) = l cos(𝜃) = l cos(𝜔 t). Suppose the robot starts from 𝜃 = 0 at time t = 0 s and
takes t = 2𝜋 s to complete one revolution. Since 𝜃 = 𝜔 t, the angular frequency is

𝜔 = 𝜃

t
= 2𝜋 rad

2𝜋 s
= 1 rad/s, and the time period to complete one cycle is T = 2𝜋 s.

The resulting plots of y = l sin t and x = l cos t are shown in Figs. 6.7 and 6.8, respec-
tively. The x- and y-components oscillate between l and −l, where the length l is the
amplitude of the sinusoids.

t, s

y l sin t

0
0

l

l

2
3
2

2π π π π

Figure 6.7 The y-component of the one-link planar robot completing one cycle in 2𝜋 s.
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t, s
2

3 2
2

x l cos t

0
0

l

l

π π π π

Figure 6.8 The x-component of the one-link planar robot completing one cycle in 2𝜋 s.

6.2.1 Relations between Frequency and Period

In Figs. 6.7 and 6.8, it took 2𝜋 s to complete one cycle of the sinusoidal signals, and it
was found that 𝜔 = 1 rad/s (i.e., in 1 s, the robot went through 1 radian of rotation).
Since one revolution (cycle) = 2𝜋 rad, a robot rotating at 1 rad/s would go through
1/2𝜋 cycles in 1 s. This is called the linear frequency or simply frequency f , with units
of cycle/s (s−1). Therefore, the relationship between the angular frequency 𝜔 and
linear frequency f is given by

𝜔 = 2𝜋 f .

By definition, the period T is defined as the number of seconds per cycle, which
means f is the reciprocal of T. In other words,

f = 1
T
.

Since 𝜔 = 2𝜋 f ,

𝜔 = 2𝜋
T

.

Solving for T gives

T = 2𝜋
𝜔

.

The above relations allow the computation of f , 𝜔, or T when only one of the three
is given. For example, assume that a one-link robot of length l goes through two

revolutions (i.e., 4𝜋 rad) in 2𝜋 s. The angular frequency is 𝜔 = 4𝜋 rad
2𝜋 s

= 2 rad/s,
the period is T = 2𝜋∕2 = 𝜋 s, and the frequency is f = 2∕2𝜋 = 1∕𝜋 Hz. Therefore,
y(t) = l sin(𝜔 t) = l sin(2 t) and x(t) = l cos(𝜔 t) = l cos(2 t); and their plots are as shown
in Figs. 6.9 and 6.10, respectively.
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y l sin (2t)

0

l

l

t, s0
2

3
2

2π π π π

Figure 6.9 The y-component of one-link planar robot completing two cycles in 2𝜋 s or
𝜔 = 2 rad/s.

x l cos (2t)

0

l

l

t, s0
2

3
2

2π π π π

Figure 6.10 The x-component of one-link planar robot completing one cycle in 2𝜋 s or
𝜔 = 2 rad/s.

6.3 PHASE ANGLE, PHASE SHIFT, AND TIME SHIFT

Suppose now that a robot of length l = 10 in. starts rotating from an initial position
𝜃 = 𝜋/8 rad and takes T = 1 s to complete one revolution, as shown in Fig. 6.11. At
any time t, the x- and y-components are given by

x(t) = l cos 𝜃

= l cos (𝜔 t + 𝜙)

= l cos
(
𝜔 t + 𝜋

8

)
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and

y(t) = l sin 𝜃

= l sin (𝜔 t + 𝜙)

= l sin
(
𝜔 t + 𝜋

8

)
.

x

y

10

(x, y)
t 

0

tω

θ

π
ϕ

/8  Phase angle

Figure 6.11 One-link planar robot starting rotation from an angle of 𝜋/8 rad.

Since l = 10,𝜔 = 2𝜋∕T = 2𝜋∕1 = 2𝜋 rad/s, and𝜙 = 𝜋/8 rad, the x- and y-components
of the one-link robot are given by

x(t) = 10 cos
(

2𝜋 t + 𝜋

8

)
and

y(t) = 10 sin
(

2𝜋 t + 𝜋

8

)
, (6.1)

where 𝜙 = 𝜋/8 is called the phase angle. Since 𝜙 represents a shift from the zero
phase to a phase of 𝜋/8 rad, it is sometimes called a phase shift. Therefore, the phase
shift is a shift in radians or degrees. If the phase angle is positive, the sinusoid shifts
to the left as shown in Fig. 6.12, but if the phase angle is negative, the sinusoid will
shift to the right. For example, the value of the sinusoid given by equation (6.1)
is not zero at time t = 0. Since the phase angle is positive, the sinusoid given by
equation (6.1) is shifted to the left.

The time shift is the time it takes the robot moving at a speed 𝜔 to pass through the
phase shift 𝜙. Setting 𝜃 = 𝜔 t gives

Time shift =
Phase angle

Angular frequency
= 𝜙

𝜔

=

𝜋

8
2𝜋

= 1
16

s. (6.2)
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y (t) = 10 sin (2 t +     )

t, s

10

10

0

16
1

1

8

16

10 sin

1
16
15

π

8
π π

Figure 6.12 Plot of the sine function shifted to the left a phase angle of 𝜋∕8 (positive
phase angle).

Note that the phase angle used to calculate the time shift must be in radians. Since
the phase angle is positive in this case, the sinusoid is shifted to the left by the amount
calculated as the time shift in equation (6.2). However, it is customary to report the
time shift as a positive number whether the phase angle is positive or negative, or
whether the sinusoid is shifted to the left or right.

6.4 GENERAL FORM OF A SINUSOID

The general expression of a sinusoid is

x(t) = A sin(𝜔 t + 𝜙), (6.3)

where A is the amplitude, 𝜔 is the angular frequency, and 𝜙 is the phase angle.

Example
6-1

Consider a cart of mass m moving on frictionless rollers as shown in Fig. 6.13. The
mass is attached to the end of a spring of stiffness k.

x(t)

k

Frictionless rollers

m

Figure 6.13 Harmonic motion of a spring–mass system.
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Suppose that the position of the mass x(t) is given by

x(t) = 2 sin
(

6𝜋 t + 𝜋

2

)
m. (6.4)

(a) Determine the amplitude, linear and angular frequencies, period, phase angle,
and time shift.

(b) Find x(t) at t = 2.0 s.

(c) Find the time required for the system to reach its maximum negative displace-
ment.

(d) Plot the displacement x(t) for 0 ≤ t ≤ 3 s.

Solution (a) Comparing the position of the mass x(t) = 2 sin
(

6𝜋 t + 𝜋

2

)
to the general

expression of equation (6.3) gives
Amplitude A = 2 m

Angular frequency 𝜔 = 6𝜋 rad/s

Phase angle 𝜙 = 𝜋

2
rad.

Since the angular frequency is 𝜔 = 2𝜋 f , the linear frequency f is given by

f = 𝜔

2𝜋
= 6𝜋

2𝜋
= 3 Hz,

and the period of the harmonic motion is given by

T = 1
f
= 1

3
s.

The time shift can be determined from the phase angle and the angular fre-
quency as

Time shift = 𝜙

𝜔

=
(
𝜋

2

) (
1

6𝜋

)

= 1
12

s.

(b) To find x(t) at t = 2.0 s, substitute t = 2.0 in equation (6.4), which gives

x(2) = 2 sin
(

6𝜋 (2) + 𝜋

2

)
= 2 sin

(
12𝜋 + 𝜋

2

)
= 2 sin(12.5𝜋)

= 2 sin(12.5𝜋 − 12𝜋)
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= 2 sin
(
𝜋

2

)
= 2.0 m.

In obtaining x(2), 12𝜋 was subtracted from the angle 12.5𝜋 to find the value
of sin(12.5𝜋). It should be noted that an integer multiple of 2𝜋 can always be
added or subtracted from the argument of sine and cosine functions. This is
done because the sine and cosine functions are periodic with a period of 2𝜋.

(c) The displacement reaches the first maximum negative displacement of −2 m

when sin (𝜃) = sin
(

6𝜋 t + 𝜋

2

)
= −1 or 𝜃 = 6𝜋 t + 𝜋

2
= 3𝜋

2
. Solving for t gives

6𝜋 t + 𝜋

2
= 3𝜋

2

⇒ 6𝜋 t = 3𝜋
2

− 𝜋

2
= 𝜋

⇒ t = 𝜋

6𝜋
or

t = 1
6

s.

(d) The plot of the displacement x(t) for 0 ≤ t ≤ 3 s is shown in Fig. 6.14.

t, s

x(t), m

3210
0

2

2

Figure 6.14 Harmonic motion of the mass–spring system for 3 s.

6.5 ADDITION OF SINUSOIDS OF THE SAME FREQUENCY

Adding two sinusoids of the same frequency but different amplitudes and phases
results in another sinusoid (sin or cos) of the same frequency. The resulting amplitude
and phase are different from the amplitude and phase of the two original sinusoids,
as illustrated with the following example.
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Example
6-2

Consider an electrical circuit with two elements R and L connected in series as
shown in Fig. 6.15.

v vR vL

1 Ω

2
3

H

i(t)
 6 sin (2t) A

vR  6 sin (2t) V

vL  8 cos (2t) V

↑

Figure 6.15 Addition of sinusoids in an RL circuit.

In Fig. 6.15, the current i(t) = 6 sin(2 t) amp flowing through the circuit produces two
voltages: vR = 6 sin(2 t) V across the resistor and vL = 8 cos(2 t) V across the induc-
tor. The total voltage voltage v(t) across the current source can be obtained using
KVL as

v(t) = vR(t) + vL(t),

or
v(t) = 6 sin(2 t) + 8 cos(2 t) V. (6.5)

The total voltage given by equation (6.5) can be written as one sinusoid (sine or
cosine) of frequency 2 rad/s. The objective is to find the amplitude and the phase
angle of the resulting sinusoid. In terms of a sine function,

v(t) = 6 sin(2 t) + 8 cos(2 t) = M sin(2 t + 𝜙), (6.6)

where the objective is to find M and 𝜙. Using the trigonometric identity sin(A + B) =
sin (A)cos (B) + cos (A) sin (B)on the right-hand side, equation (6.6) can be written as

6 sin(2 t) + 8 cos(2 t) = (M cos𝜙) sin(2 t) + (M sin𝜙) cos(2 t). (6.7)

Equating the coefficients of sin(2 t) and cos(2 t) on both sides of equation (6.7) gives

sines ∶ M cos(𝜙) = 6 (6.8)

cosines ∶ M sin(𝜙) = 8. (6.9)

To determine the magnitude M and phase 𝜙, equations (6.8) and (6.9) are converted
to polar form as shown in Fig. 6.16. Therefore,

M =
√

62 + 82

= 10

𝜙 = atan2(8, 6)

= 53.13∘.
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M

x
M cos    6

M sin    8

y

ϕ

ϕ

ϕ

Figure 6.16 Determination of magnitude and phase of the resulting sinusoid in an RL circuit.

Therefore, v(t) = 6 sin(2 t) + 8 cos(2 t) = 10 sin(2 t + 53.13∘) V. The amplitude of the
voltage sinusoid is 10 V, the angular frequency is 𝜔 =2 rad/s, the linear frequency is
f = 𝜔∕2𝜋 = 2∕2𝜋 = 1∕𝜋 Hz, the period is T = 𝜋 = 3.142 s, the phase angle = 53.13∘ =
(53.13∘)

(
𝜋 rad∕180∘

)
= 0.927 rad, and the time shift can be calculated as

t = 𝜙

𝜔

= 0.927
2

= 0.464 s.

The plot of the voltage and current waveforms is shown in Fig. 6.17. It can be seen
from Fig. 6.17 that the voltage waveform is shifted to the left by 0.464 s (time shift).
In other words, the voltage in the RL circuit leads the current by 53.3∘. It will be
shown later that it is opposite in an RC circuit, where the voltage waveform lags the
current.

10

6

0.464 2.678 3.142 t, s

6

Voltage

Current

0
0

10

Figure 6.17 Voltage and current relationship for an RL circuit.
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Note: The voltage v(t) can also be represented as one sinusoid using the cosine
function as

v(t) = 6 sin(2 t) + 8 cos(2 t) = M cos(2 t + 𝜙1). (6.10)

The amplitude M and the phase angle 𝜙1 can be determined using a procedure
similar to that outlined above. Using the trigonometric identity cos(A + B) =
cos (A) cos (B) − sin (A) sin (B) on the right-hand side of equation (6.10) gives

6 sin(2 t) + 8 cos(2 t) = (−M sin𝜙1) sin(2 t) + (M cos𝜙1)cos(2 t). (6.11)

Equating the coefficients of sin(2 t) and cos(2 t) on both sides of equation (6.11) gives

sines ∶ M sin(𝜙1) = −6 (6.12)

cosines ∶ M cos(𝜙1) = 8. (6.13)

To determine the magnitude M and phase 𝜙1, equations (6.12) and (6.13) are con-
verted to polar form as shown in Fig. 6.18.

M

y

x
M cos    1 8

M sin    1 6

1

ϕ

ϕ

ϕ

Figure 6.18 Determination of magnitude and phase for a cosine function.

Therefore,
M =

√
62 + 82

= 10

𝜙1 = atan2(−6, 8)

= −36.87∘.

Therefore, v(t) = 6 sin(2 t) + 8 cos(2 t) = 10 cos(2 t − 36.87∘) V.

This expression can also be obtained directly from the sine function using the trig
identity sin 𝜃 = cos(𝜃 − 90∘). Therefore,

10 sin(2 t + 53.13∘) = 10 cos
(
(2 t + 53.13∘) − 90∘

)
= 10 cos(2 t − 36.87∘).

In general, the results of this example can be expressed as follows:

A cos𝜔 t + B sin𝜔 t =
√

A2 + B2 cos (𝜔 t − atan2(B,A) )

A cos𝜔 t + B sin𝜔 t =
√

A2 + B2 sin (𝜔 t + atan2(A,B) ) .
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Example
6-3

Consider the RC circuit shown in Fig. 6.19.

C F

C

1 kΩ

i(t)
 cos(120  t)mA

v  vR vC

vR  10 cos 120   t   V

vC  5 sin 120  t     V
↑

π

π

π

μ

π

200

120

Figure 6.19 Addition of sinusoids in an RC circuit.

In Fig. 6.19, the current i(t) = cos(120𝜋 t) mA flowing through the circuit produces
two voltages: vR = 10 cos(120𝜋 t) across the resistor and vC = 5 sin(120𝜋 t) across the
capacitor. The total voltage voltage v(t) can be obtained using KVL as

v(t) = vR(t) + vC(t)

= 10 cos(120𝜋 t) + 5 sin(120𝜋 t). (6.14)

The total voltage given by equation (6.14) can be written as a single sinusoid of fre-
quency 120𝜋 rad/s. The objective is to find the amplitude and the phase angle of the
sinusoid. The total voltage can be written as a cosine function as

10 cos(120𝜋t) + 5 sin(120𝜋t) = M cos(120𝜋t + 𝜙2)

= (Mcos𝜙2) cos(120𝜋t)

+(−Msin𝜙2)sin(120𝜋t), (6.15)

where the trigonometric identity cos (A + B) = cos A cos B − sin A sin B is employed
on the right-hand side of the equation. Equating the coefficients of sin(120𝜋 t) and
cos(120𝜋 t) on both sides of equation (6.15) gives

cosines ∶ M cos(𝜙2) = 10 (6.16)

sines ∶ M sin(𝜙2) = −5. (6.17)

To determine the magnitude M and phase angle 𝜙2, equations (6.16) and (6.17) are
converted to the polar form as shown in Fig. 6.20. Therefore,

M =
√

102 + 52

= 11.18

𝜙2 = atan2(−5, 10)

= −26.57∘,

which gives v(t) = 11.18 cos(120𝜋 t − 26.57∘) V.



Trim Size: 8in x 10in Rattan2e c06.tex V1 - 03/17/2021 2:45pm Page 174�

� �

�

174 Chapter 6 Sinusoids in Engineering

M

2

y

x
M cos    2  10

M sin    2  5

ϕ

ϕ

ϕ

Figure 6.20 Determination of magnitude and phase of the resulting sinusoid in an RC circuit.

The amplitude of the voltage sinusoid is 11.8 V, the angular frequency is 𝜔 = 120𝜋
rad/s, the linear frequency is f = 𝜔/2𝜋 = 60 Hz, the period is T = 16.7 ms, the phase
angle is −26.57∘, and the time shift is 1.23 ms. Note again that since the phase angle
is negative, the sinusoid is shifted to the right by the amount calculated as the
time shift shown in Fig. 6.21, and that the time shift is still regarded as a positive
number.

The plot of the voltage and current waveforms is shown in Fig. 6.21. It can be
seen from the figure that the voltage waveform is shifted to the right by 1.23 ms
(time shift). In other words, the voltage in this RC circuit lags the current by 26.57∘.

t, ms
1.23 ms

11.18

1.0
0

1.23 ms
0 1.23 16.7

Current in mA

Voltage in V

1.0

11.18

Figure 6.21 Voltage and current relationship for an RC circuit.

Example
6-4

A hip implant is subjected to a cyclic load during a fatigue test, as shown in
Fig. 6.22. The load applied to the hip implant is given by

F(t) = 250 sin(6𝜋 t) + 1250 N.
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(a) Write down the amplitude, frequency (in hertz), period (in seconds), phase
angle (in degrees), time shift (in seconds), and vertical shift (in Newtons) of
the load profile.

(b) Plot one cycle of F(t) and indicate the earliest time when the force reaches its
maximum value.

F(t)

Figure 6.22 Hip implant subjected to a cyclic load.

Solution (a) Comparing the force F(t) = 250 sin(𝜋 t) + 1250 to the general form of
equation (6.3) gives

Amplitude = 250 N.

Frequency ∶ 𝜔 = 2𝜋 f

= 6𝜋 ⇒ f = 3 Hz.

Period ∶ T = 1
f

= 1
3

s.

Phase angle ∶ 𝜙 = 0∘.

Time shift ∶ 6𝜋 t = 0 ⇒ t = 0 s (There is no time shift.)

Vertical shift = 1250 N.
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(b) A plot of one cycle of the cyclic force F(t) is shown in Fig. 6.5. It can be seen
from this figure that the earliest time the force has a maximum value of 1500 N
is at time tmax = 1∕12 s. The times when the force F(t) is maximum can also be
found analytically as

250 sin(6𝜋 tmax) + 1250 = 1500 ⇒ 250 sin(6𝜋 tmax) = 250 ⇒ sin(6𝜋 tmax) = 1.

Therefore,
6𝜋 tmax = 𝜋

2
,

3𝜋
2

, ⋅ ⋅ ⋅ ,

which gives

tmax = 1
12

,
1
4
⋅ ⋅ ⋅ s.

Therefore, the earliest time the maximum force occurs is t = 1∕12 s.

1500

1250

1000

Force, N

0
0 1/12 1/6 1/4 1/3 t, s

Figure 6.23 One cycle of the force F(t).

PROBLEMS

6-1. The tip of a one-link robot is located at
𝜃 = 0 at time t = 0 s as shown in Fig.
P6.1. It takes 4 s for the robot to move
from 𝜃 = 0 to 𝜃 = 2𝜋 rad. If l = 8 in.,
plot the x- and y-components as a func-
tion of time. Also find the amplitude,
frequency, period, phase angle, and time
shift.

t  0
x

l

y

Figure P6.1 Rotating one-link robot starting at
𝜃 = 0∘.
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6-2. The tip of a one-link robot is located at
𝜃 = 𝜋∕6 rad at time t = 0 s, as shown in
Fig. P6.2. It takes 2 s for the robot to move
from 𝜃 = 𝜋∕6 rad to 𝜃 = 𝜋∕6 + 2𝜋 rad. If
l = 10 in., plot the x- and y-components
as a function of time. Also find the ampli-
tude, frequency, period, phase angle, and
time shift.

x

l

y

/6

t  0

π

Figure P6.2 Rotating one-link robot starting at
𝜃 = 30∘.

6-3. The tip of a one-link robot is located at
𝜃 = −𝜋∕4 rad at time t = 0 s as shown
in Fig. P6.3. The robot is rotating at an
angular frequency of 4𝜋 rad/s. If l = 7.5
cm, plot the x- and y-components as a
function of time. Also find the amplitude,
frequency, period, phase angle, and time
shift.

x

y

l
4

t 
 0

π

Figure P6.3 Rotating one-link robot starting at
𝜃 = −45∘.

6-4. The tip of a one-link robot is located at
𝜃 = 𝜋∕2 rad at t = 0 s as shown in Fig.
P6.4. It takes 4 s for the robot to move
from 𝜃 = 𝜋∕2 rad to 𝜃 = 𝜋∕2 + 2𝜋 rad. If
l = 10 cm, plot the x- and y-components
as a function of time. Also find the ampli-
tude, frequency, period, phase angle, and
time shift.

t  0

y

/2
l

x
π

Figure P6.4 Rotating one-link robot starting at
𝜃 = 90∘.

6-5. The tip of a one-link robot is located at
𝜃 = 3𝜋∕4 rad at time t = 0 s as shown in
Fig. P6.5. It takes 1 s for the robot to move
from 𝜃 = 3𝜋∕4 rad to 𝜃 = 3𝜋∕4 + 2𝜋 rad.
If l = 12 cm, plot the x- and y-components
as a function of time. Also find the ampli-
tude, frequency, period, phase angle, and
time shift.

t 
 0

x

l

y

3
4
π

Figure P6.5 Rotating one-link robot starting at
𝜃 = 135∘.

6-6. The tip of a one-link robot is located at
𝜃 = 𝜋 rad at time t = 0 s as shown in Fig.
P6.6. It takes 3 s for the robot to move
from 𝜃 = 𝜋 rad to 𝜃 = 3𝜋 rad. If l = 5
cm, plot the x- and y-components as a
function of time. Also find the amplitude,
frequency, period, phase angle, and time
shift.

t  0
x

y

l

π

Figure P6.6 Rotating one-link robot starting at
𝜃 = 180∘.
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6-7. A spring–mass system moving in the
y-direction has a sinusoidal motion as
shown in Fig. P6.7. Determine the ampli-
tude, period, frequency, and phase angle
of the motion. Also, write the expression
for y(t).

k

m

y(t)

y(t), cm

3

0

3

1.0

2.0 t, s

Figure P6.7 Sinusoidal motion of a spring–mass
system in the y-direction for problem P6-7.

6-8. A spring–mass system moving in the
x-direction has a sinusoidal motion as
shown in Fig. P6.8. Determine the ampli-
tude, period, frequency, and phase angle
of the motion. Also, write the expression
for x(t).

x(t)
k

Frictionless rollers

m

t, s

5

0
0

x(t), cm

5

1
30

1
15

Figure P6.8 Sinusoidal motion of a spring–mass
system in the x-direction for problem P6-8.

6-9. Repeat problem P6-8 for the sinusoidal
motion shown in Fig. P6.9.

x(t), in.

0
0.4    0 1.6 3.6 t, s

8

8

Figure P6.9 Motion of a spring–mass system in the
x-direction for problem P6-9.

6-10. Repeat problem P6-8 for the sinusoidal
motion shown in Fig. P6.10.

10

x(t), in.

0
0

10

0.1 0.6 1.1 t, s

Figure P6.10 Motion of a spring–mass system in
the x-direction for problem P6-10.

6-11. A spring–mass system is displaced x = 10
cm and let go. The system then vibrates
under a simple harmonic motion in the
horizontal direction; in other words, it
travels back and forth from 10 cm to −10
cm. If it takes the system 𝜋 s to complete
one cycle of the harmonic motion, deter-
mine
(a) The amplitude, frequency, and period

of the motion.
(b) The time required for the system to

reach −10 cm.
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(c) Plot one complete cycle of x(t), and
indicate the amplitude, period, and
time shift on the graph.

x(t)
k

Frictionless rollers

m

Figure P6.11 A spring–mass system for problem
P6-11.

6-12. Suppose the spring–mass system of prob-
lem P6-11 is displaced −10 cm and takes
𝜋∕4 s to complete a cycle.
(a) Find the amplitude, frequency, and

period of the motion.
(b) Find the time required for the system

to reach the equilibrium point (i.e.,
x(t) = 0).

(c) Plot one complete cycle of x(t), and
indicate the amplitude and period on
the graph.

6-13. The position of a spring–mass system
shown in Fig. P6.11 is given by x(t) =
4 sin

(
𝜋 t + 𝜋

8

)
cm.

(a) Find the amplitude, frequency,
period, and time shift of the position
of the mass.

(b) Find the time required for the system
to reach the first maximum displace-
ment.

(c) Plot one complete cycle of x(t), and
indicate the amplitude and the time
shift on the graph.

6-14. The position of a spring–mass system
shown in Fig. P6.11 is given by x(t) =
10 sin(4𝜋 t − 𝜋

2
) cm.

(a) Find the amplitude, frequency,
period, and time shift of the position
x(t).

(b) Find the time required for the system
to reach x(t) = 0 cm and x(t) = 10 cm
for the first time (after t = 0).

(c) Plot one complete cycle of x(t), and
indicate the amplitude and the time
shift on the graph.

6-15. The position of a spring–mass system
shown in Fig. P6.11 is given by x(t) =
5 cos(10 𝜋 t) cm.
(a) Find the amplitude, frequency,

period, and time shift of the position
of the mass.

(b) Find the time required for the system
to reach its first maximum negative
displacement (i.e., x(t) = −5 cm).

(c) Plot one complete cycle of x(t), and
indicate the amplitude and the time
shift on the graph.

6-16. A simple pendulum of length L = 100 cm
is shown in Fig. P6.16. The angular dis-
placement 𝜃(t) in radians is given by

𝜃(t) = 0.5 cos

(√
g
L

t

)
.

L

g = 9.8 m/s2

θ

Figure P6.16 A simple pendulum.

(a) Find the amplitude, frequency, and
period of oscillation of 𝜃(t).

(b) Find the time required for the simple
pendulum to reach its first zero angu-
lar displacement (i.e., 𝜃(t) = 0).

(c) Plot one complete cycle of 𝜃(t), and
indicate the amplitude and period on
the graph.

6-17. A simple pendulum of length l and mass
m oscillates in the vertical plane, as shown
in Fig. P6.16. If l = 0.1 m, m = 0.5 kg, and

𝜃(t) = 𝜋

6
sin

(√
g
l
t + 𝜋

2

)
rad,

(a) Write down the amplitude, frequency
(in hertz), period (in seconds), phase
angle (in degrees), and time shift (in
seconds) of 𝜃(t).
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(b) Plot one cycle of 𝜃(t) and indicate
the earliest time when the position is
zero.

(c) Suppose the attachment point of
the pendulum can rotate with the
intent to tune the behavior of oscilla-
tion 𝜃T(t). The total angular response
is then given by 𝜙(t) = 𝜃T(t) − 𝜃(t).
If the tuning function is given by

𝜃T(t) =
𝜋

18
sin

(√
g
l
t
)

, write 𝜙(t) in

the form 𝜙(t) = M cos
(√

g
l
t + 𝛼

)
; in

other words, find M and 𝛼.

6-18. A sinusoidal current i(t) = 0.1 sin(100 t)
amps is flowing through the RC circuit
shown in Fig. P6.18. The voltages across
the resistor and capacitor are given by

vR(t) = 20 sin(100 t) V

vC(t) = −20 cos(100 t) V,

where t is in seconds.
(a) The voltage applied to the circuit

is given by v(t) = vR(t) + vC(t). Write
v(t) in the form v(t) = M sin(100 t +
𝜃); in other words, find M and 𝜃.

(b) Suppose now that v(t) = 28.28 sin(
100 t − 𝜋

4

)
volts. Write down the

amplitude, frequency (in hertz),
period (in seconds), phase angle (in
degrees), and time shift (in seconds)
of the voltage v(t).

(c) Plot one cycle of the voltage v(t) =
28.28 sin

(
100 t − 𝜋

4

)
, and indicate

the earliest time (after t = 0) when
the voltage is 28.28 V.

i(t)

200 Ω vR (t)

vC (t)
v(t)

50 μF

Figure P6.18 RC circuit for problem P6-18.

6-19. A current i(t) = 0.1cos(1000t) amps is
flowing through the RC circuit shown in

Fig. P6.19. If the voltage across the resis-
tor is vR(t) = −10 cos(1000t) volts and the
voltage across the capacitor is vC(t) =
10 cos(1000t + 90∘) volts,

I

R
V

C

~

Figure P6.19 RC circuit with a sinusoidal current
source for problem P6-19.

(a) Write down the amplitude, frequency
(in hertz), period, phase angle (in
radians) and time shift (in millisec-
onds) of the voltage across the capac-
itor, vC(t).

(b) Plot one cycle of vC(t) and indicate
the earliest time when the voltage is
maximum.

(c) The total voltage applied to the cir-
cuit is given by v(t) = vC(t) + vR(t)
volts. Write v(t) in the form v(t) =
M cos(1000t + 𝜙) (i.e., find M and 𝜙).

6-20. A series RL circuit is subjected to a
sinusoidal voltage of frequency 120𝜋
rad/s, as shown in Fig. P6.20. The current
i(t) = 10 cos(120𝜋 t) A is flowing through
the circuit. The voltages across the resis-

tor R = 1 Ω and inductor L = 10
𝜋

mH
are given by vR(t) = 10 cos(120𝜋 t) and
vL(t) = 12 cos

(
120𝜋 t + 𝜋

2

)
volts, where t

is in seconds.

R

v(t)

i(t)

vR(t)

L  vL(t)

Figure P6.20 A series RL circuit for problem
P6-20.
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(a) Write down the amplitude, frequency
(in hertz), period (in seconds), phase
shift (in degrees), and time shift (in
seconds) of the voltage vL(t).

(b) Plot one cycle of the voltage vL(t),
and indicate the earliest time after
t = 0 when the voltage is maximum.

(c) The total voltage across the circuit
is given by v(t) = vR(t) + vL(t). Write
v(t) in the form v(t) = M cos(120𝜋 t +
𝜃), in other words find M and 𝜃.

6-21. A resistor and inductor are connected in
series with a sinusoidal voltage source, as
shown in Fig. P6.20. The voltage across
the resistor is given as vR(t) = 5 cos(4𝜋t)
volts and the voltage across the inductor
is given as vL(t) = 8 cos(4𝜋t − 𝜋∕2) volts.
(a) Write down the amplitude, frequency

(in hertz), period, phase angle (in
degrees), and time shift (in seconds)
of the voltage across the inductor
vL(t).

(b) Plot one cycle of vL(t) and indicate
the earliest time when the signal is
maximum.

(c) If the supply voltage is v(t) = vR(t) +
vL(t), write v(t) in the form v(t) =
M cos(4𝜋t + 𝜙) (i.e., find M and 𝜙).

6-22. A sinusoidal voltage v(t) = 10 sin(1000 t)
V is applied to the RLC circuit
shown in Fig. P6.22. The current i(t) =
0.707sin(1000 t + 45∘) flowing through
the circuit produces voltages across R,
L, and C of

vR(t) = 7.07 sin(1000 t + 45∘) V

vL(t) = 7.07 sin(1000 t + 135∘) V

vC(t) = 14.14 sin(1000 t − 45∘) V.

(a) Write down the amplitude, frequency
(in hertz), period (in seconds), phase
shift (in radians), and time shift (in
milliseconds) of the current i(t) =
0.707 sin(1000 t + 45∘) A.

(b) Plot one cycle of the current i(t) =
0.707 sin(1000 t + 45∘) A and indicate

the earliest time (after t = 0) when
the current is 0.707 A.

(c) Using trigonometric identities,
show that v1(t) = vR(t) + vC(t) =
15 sin 1000 t − 5 cos 1000 t.

(d) Write v1(t) obtained in part (c) in
the form v1(t) = M cos(1000 t + 𝜃); in
other words, find M and 𝜃.

i(t) = 0.707 sin(1000 t + 45°) A

=10 sin(1000 t) V

+ 

v(t)

vR R = 10 Ω
−
+ 
vL L = 10 mH
−
+ 
vC C = 50    F
−

μ

Figure P6.22 RLC circuit for problem P6-22.

6-23. A parallel RL circuit is subjected to a
sinusoidal voltage of frequency 60𝜋 rad/s,
as shown in Fig. P6.23. The currents i1(t)
and i2(t) are given by

i1(t) = 5 cos(60𝜋 t) A

i2(t) = 5 cos
(

60𝜋 t − 𝜋

2

)
A.

v(t)  

i(t) i1 (t)

i2 (t)

L R

Figure P6.23 A parallel RL circuit for problem
P6-23.

(a) Given that i(t) = i1(t) + i2(t), write i(t)
in the form i(t) = M sin(60𝜋 t + 𝜃); in
other words, find M and 𝜃.

(b) Suppose i(t) = 7.1 sin
(

60𝜋 t + 𝜋

4

)
A.

Determine the amplitude, frequency
(in hertz), period (in seconds), phase
shift (in degrees), and time shift (in
seconds).
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(c) Given your results of part (b), plot
one cycle of the current i(t), and
clearly indicate the earliest time after
t = 0 at which it reaches its maximum
value.

6-24. A parallel RL circuit is subjected to a
sinusoidal voltage of frequency 10𝜋 rad/s,
as shown in Fig. P6.23. The currents i1(t)
and i2(t) are given by

i1(t) = 100 cos(10𝜋 t) mA

i2(t) = 100 sin(10𝜋 t) mA.

(a) Given that i(t) = i1(t) + i2(t), write i(t)
in the form i(t) = M sin(10𝜋 t + 𝜃); in
other words, find M and 𝜃.

(b) Suppose i(t) = 141.4 cos
(

10𝜋 t + 𝜋

4

)
mA. Determine the amplitude, fre-
quency (in hertz), period (in sec-
onds), phase shift (in degrees), and
time shift (in seconds).

(c) Given your results of part (b), plot
one cycle of the current i(t), and
clearly indicate the earliest time after
t = 0 at which it reaches its maximum
value.

6-25. Consider the RC circuit shown in Fig.
P6.25, where the currents are i1(t) =
7 sin(𝜋t) A and i2(t) = 4

√
2 sin(𝜋t + 𝜋

2
) A.

C Rv(t)  

i(t) i1 (t)

i2 (t)

Figure P6.25 A parallel RC circuit for problem
P6-25.

(a) Given that i(t) = i1(t) + i2(t), write i(t)
in the form i(t) = M sin(𝜋t + 𝜙) (i.e.,
find M and 𝜙).

(b) Suppose now that i(t) = 9 sin(𝜋t +
38.9∘) A. Write down the amplitude,
frequency (in hertz), period, phase
angle (in radians), and time shift (in
seconds) of the current i(t).

(c) Given your results of part (b), plot
one cycle of the function i(t) =
9 sin(𝜋t + 38.9∘), and clearly indicate
the earliest time when it reaches its
maximum value.

6-26. Consider the RC circuit shown Fig. P6.25,
where the currents are

i1(t) = 100 cos(100𝜋t + 𝜋

4
) mA

i2(t) = 500 cos(100𝜋t + 3𝜋
4
) mA.

(a) Given that i(t) = i1(t) + i2(t), write i(t)
in the form i(t) = M sin(100𝜋t +𝜙)A;
in other words, find M and 𝜙.

(b) Suppose now that i(t) = M sin
(100 t + 𝜃) A, where M = 0.51 A and
𝜃 = −146.31∘. Determine the ampli-
tude, frequency (in hertz), period (in
seconds), phase shift (in degrees),
and time shift (in seconds).

(c) Given your results of part (b), plot
one cycle of the current i(t), and
clearly indicate the earliest time after
t = 0 at which it reaches its maximum
value.

6-27. Consider the RC circuit shown in Fig.
P6.27. The voltages across the resis-
tor and capacitor are given by vR(t) =
3
√

3 sin(𝜋t) volts and vC(t) = 5 cos(𝜋t +
30∘) volts, where t is in seconds.

C

+

v(t)

−

i(t)

+
vR R

−
+
vC

−

Figure P6.27 RC circuit for problem P6-27.
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(a) Write down the amplitude, frequency
(in hertz), period, phase angle (in
radians) and time shift (in seconds)
of the voltage across the capacitor
vC(t).

(b) Plot one cycle of the voltage across
the capacitor vC(t) and indicate the
earliest time when the voltage is
minimum.

(c) The total voltage applied to the cir-
cuit is given by v(t) = vC(t) + vR(t)
volts. Write v(t) in the form v(t) =
M sin(𝜋t + 𝜃) (i.e., find M and 𝜃).

6-28. Two voltages v1(t) = 10 cos(100𝜋 t + 90∘)
V and v2(t) = 3 sin(100𝜋 t + 𝜋

4
) V are

applied to the OP-AMP circuit shown in
Fig. P6.28.

v1 (t)

vo (t)

v2 (t)

20 kΩ

28.28 kΩ

28.28 kΩ

+Vcc

−

+
−Vcc

+ 

−

Figure P6.28 An OP-AMP circuit for problem
P6-28.

(a) Write down the amplitude, frequency
(in hertz), period (in seconds), phase
shift (in radians), and time shift (in
seconds) of the voltage v1(t).

(b) Plot one cycle of the voltage v1(t),
and indicate the earliest time after
t = 0 when the voltage is 10 V.

(c) The output voltage vo(t) is given by
vo(t) = −

(√
2 v1(t) + v2(t)

)
. Write

vo(t) in the form vo(t) = M cos(100𝜋
t + 𝜃∘); in other words, find M and 𝜃.

6-29. While accelerating through the water, a
boat propeller fin causes cavitation in
the water represented by the sinusoid
c1(t) = 3 sin(100𝜋t) inches, as shown in
Fig. P6.29. A second cavitation caused by

the adjacent fin is represented as c2(t) =
3 sin(100𝜋t + 25∘) inches.

Figure P6.29 Sinusoidal cavitation of boat
propeller fins.

(a) Write down the amplitude, frequency
(in Hz), period, phase angle (in radi-
ans) and time shift (in seconds) of the
cavitation c2(t).

(b) Plot one cycle of the cavitation c2(t)
and indicate the earliest time when
the cavitation is zero.

(c) The total cavitation of the two fins
c(t) is given by c(t) = c1(t) + c2(t)
inches. Write c(t) in the form c(t) =
M cos(100𝜋t + 𝜃) (i.e., find M and 𝜃).

6-30. A pair of springs and masses vibrate
under simple harmonic motion, as
shown in Fig. P6.30. The positions
of the masses in inches are given by
y1(t) = 5

√
2 cos

(
2𝜋 t + 𝜋

4

)
and y2(t) =

10 cos(2𝜋 t), where t is in seconds.
(a) Write down the amplitude, frequency

(in hertz), period (in seconds), phase
shift (in degrees), and time shift (in
seconds) of the position of the first
mass y1(t).

(b) Plot one cycle of the position y1(t),
and indicate the earliest time after
t = 0 when the position is zero.

(c) The vertical distance between the
two masses is given by 𝛿(t) = y1(t) −
y2(t). Write 𝛿(t) in the form 𝛿(t) =
M sin(2𝜋 t + 𝜃∘); in other words, find
M and 𝜃.
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y1(t) y2(t)

Figure P6.30 A pair of springs and masses for
problem P6-30.

6-31. Suppose the positions of the masses
in problem P6-30 are given by y1(t) =
10 cos(4𝜋t) and y2(t) = 5 sin(4𝜋t − 𝜋

6
)

inches, where t is in seconds.
(a) Write down the amplitude, frequency

(in hertz), period (in seconds), phase
shift (in degrees), and time shift (in
seconds) of y2(t).

(b) Plot one cycle of the position y2(t)
and indicate the earliest time when
the position is zero.

(c) The vertical distance between the
two masses is given by 𝛿(t) = y1(t) −
y2(t). Write 𝛿(t) in the form 𝛿(t) =
M cos(4𝜋t + 𝜃) (i.e., find M and 𝜃).

6-32. Two oscillating masses are connected
by a spring as shown in Fig. P6.32.
The positions of the masses in inches
are given by x1(t) = 5

√
2 cos

(
2𝜋 t + 𝜋

4

)
and x2(t) = 10 cos(2𝜋 t), where t is in
seconds.
(a) Write down the amplitude, frequency

(in hertz), period (in seconds), phase
shift (in degrees), and time shift (in
seconds) of the position of the first
mass x1(t).

(b) Plot one cycle of the position x1(t),
and indicate the earliest time after
t = 0 when the position is zero.

(c) The elongation of the spring is given
by 𝛿(t) = x2(t) − x1(t). Write 𝛿(t) in the

form 𝛿(t) = M sin(2𝜋 t + 𝜙); in other
words, find M and 𝜙.

x1(t) x2(t)

Figure P6.32 Two oscillating masses for problem
P6-32.

6-33. A wind probe that measures turbu-
lence is mounted to the tip of a fighter
jet wing, as shown in Fig. P6.33. The
wing vibrates according to the sinusoidal
equation y(t) = 2 sin(62.83t) inches, while
the turbulence is measured as yM(t) =
4 cos(62.83t − 60∘) inches.
(a) Write down the amplitude, frequency

(in hertz), period, phase angle (in
radians) and time shift (in seconds)
of the measured turbulence yM(t).

(b) Plot one cycle of the measured turbu-
lence yM(t) and indicate the earliest
time when it is maximum.

(c) The total error of the sensor
e(t) is given by e(t) = yM(t) − y(t)
inches. Write e(t) in the form e(t) =
M sin(62.83t + 𝜃) (i.e., find M and 𝜃).

Figure P6.33 Fighter jet under turbulence.

6-34. A manufacturing plant employs a heater
and a conveyer belt motor on the same
220 V service line as shown in Fig. P6.34.
The voltages across the heater and motor
are given by VH(t) = 66 cos(120𝜋 t)V and
VM(t) = 180 cos(120𝜋 t + 𝜋

3
) V, where t is

in seconds.
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Heater Motor+
VT (t)

+ VH (t) – + VM (t) –

–

Figure P6.34 Conveyer motor and heater
connected across the 220 V service line.

(a) Write down the amplitude, frequency
(in hertz), period, phase angle (in
degrees), and phase shift (in sec-
onds) of the voltage across the motor,
VM(t).

(b) Plot one cycle of the motor voltage
VM(t), and indicate the earliest time
when the voltage is maximum.

(c) Write the voltage VM(t) in the
form VM(t) = A sin(120𝜋 t) + B cos
(120𝜋 t) (i.e., find A and B).

(d) The total voltage is VT(t) + VM(t).
Write VT(t) in the form VT(t) =
V cos(120𝜋 t + 𝜃) (i.e., find V and 𝜃).

6-35. Suppose the voltages across the heater
and motor of Fig. P6.34 are given by
VH(t) = 50 sin(30𝜋t) volts and VM(t) =
150 cos(30𝜋t − 𝜋

4
) volts, where t is in sec-

onds.
(a) Write down the amplitude, frequency

(in Hz), period, phase angle (in
degrees), and time shift (in seconds)
of the voltage across the motor,
VM(t).

(b) Plot one cycle of the motor voltage
VM(t), and indicate the earliest time
when the voltage is maximum.

(c) Write the voltage VM(t) in the form
VM(t) = A sin(30𝜋 t) + B cos(30𝜋 t)
(i.e., find A and B).

(d) The total voltage is VT(t) = VH(t) +
VM(t). Write VT(t) in the form
VT(t) = V sin(30𝜋t + 𝜙) (i.e., find V
and 𝜙).

6-36. In the three-phase circuit shown
in Fig. P6.36, vab(t) = van(t) − vbn(t),
where van(t) = 120 sin(120𝜋 t) V and
vbn(t) = 120 sin(120𝜋 t − 120∘) V are the

line-to-neutral voltages and vab is the
line-to-line voltage of the three-phase
system.

c 

a
vanvcn

vbn

n

b

~

~

~

Figure P6.36 A balanced three-phase circuit.

(a) Write down the amplitude, frequency
(in hertz), period, phase angle (in
degrees), and phase shift (in seconds)
of the voltage, vbn(t).

(b) Plot one cycle of the line-to-neutral
voltage vbn(t), and indicate the ear-
liest time when the voltage is maxi-
mum.

(c) Write the line-to-line voltage vab(t)
in the form vab(t) = A sin(120𝜋 t) +
B cos(120𝜋 t) (i.e., find A and B).

(d) Write vab(t) in the form vab(t) =
V cos(120𝜋 t + 𝜃) (i.e., find V and 𝜃).

6-37. A pair of noise-canceling headphones
creates sinusoidal responses with which
to cancel out ambient noise signals, as
shown in Fig P6.37. During calibration,
a noise signal is measured as N(t) =
75 cos(4000𝜋t) decibels (dBA). The cali-
bration signal produced by the noise can-
celing software is C(t) = 75 sin(4000𝜋t −
𝜋

3
) dBA.

(a) Write down the amplitude, frequency
(in hertz), period, phase angle (in
degrees), and time shift (in seconds)
of the calibration signal, C(t).

(b) Plot one cycle of the calibration sig-
nal C(t) and indicate the earliest time
when the signal is maximum.
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(c) The final noise-canceled signal
is given by F(t) = C(t) + N(t).
Write F(t) in the form F(t) =
M cos(4000𝜋t + 𝜙) (i.e., find M and
𝜙).

Figure P6.37 Noise-canceling headphones.

6-38. In the three-phase circuit shown in
Fig. P6.36, vca(t) = vcn(t) − van(t), where
vcn(t) = 120 sin(120𝜋 t + 120∘) V and
van(t) = 120 cos(120𝜋 t − 90∘) V are the
line-to-neutral voltages and vca is the
line-to-line voltage of the three-phase
system.
(a) Write down the amplitude, frequency

(in hertz), period, phase angle (in
degrees), and phase shift (in seconds)
of the voltage, van(t).

(b) Plot one cycle of the line-to-neutral
voltage van(t), and indicate the earli-
est time when the voltage reaches 60
V.

(c) Write the line-to-line voltage vca(t)
in the form vca(t) = A sin(120𝜋 t) +
B cos(120𝜋 t) (i.e., find A and B).

(d) Write vca(t) in the form vca(t) =
V cos(120𝜋 t + 𝜃) (i.e., find V and 𝜃).

6-39. In response to a global pandemic, a
hospital ventilator shown in Fig. P6.39
is retrofit to support two patients at
one time. The input voltage that con-
trols the oxygen flow per patient is sinu-
soidal. Suppose the voltage associated
with patient A is vA(t) = 2 cos

(
𝜋

2
t
)

volts
and the voltage associated with patient B
is vB(t) = 2.5 cos

(
𝜋

2
t + 𝜋

3

)
volts.

(a) Write down the amplitude, frequency
(in hertz), period, phase angle (in
degrees) and time shift of the patient
B voltage vB(t).

(b) Plot one cycle of the patient B volt-
age vB(t) and indicate the earliest
time when the voltage is maximum.

(c) The total voltage applied to the venti-
lator circuit is given by v(t) = vA(t) +
vB(t) volts. Write v(t) in the form
v(t) = M cos

(
𝜋

2
t + 𝜙

)
(i.e., find M

and 𝜙).

Figure P6.39 Dual-patient hospital ventilator for
pandemic response.

6-40. The hip implant shown in Fig. P6.40 is
subjected to a cyclic load during a fatigue
test. The load applied to the hip implant
is given by

F(t) = 15 sin(10𝜋t) + 75 N.

F(t)

Figure P6.40 Hip implant subjected to a cyclic
load.
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(a) Write down the amplitude, frequency
(in hertz), period (in seconds), phase
angle (in degrees), time shift (in sec-
onds), and vertical shift (in Newtons)
of the load profile.

(b) Plot one cycle of F(t) and indicate the
earliest time when the force reaches
its maximum value.



Trim Size: 8in x 10in Rattan2e c07.tex V1 - 03/17/2021 3:07pm Page 188�

� �

�

CHAPTER
7

Systems of
Equations in
Engineering

7.1 INTRODUCTION

The solution of a system of linear equations is an important topic for all engineering
disciplines. In this chapter, the solution of 2×2 systems of equations will be carried
out using four different methods: substitution method, graphical method, matrix
algebra method, and Cramer’s rule. It is assumed that the students are already famil-
iar with the substitution and graphical methods from their high school algebra course,
while the matrix algebra method and Cramer’s rule are explained in detail. The
objective of this chapter is to be able to solve the systems of equations encountered in
beginning engineering courses such as physics, statics, dynamics, and DC circuit anal-
ysis. While the examples given are limited to 2×2 systems of equations, the matrix
algebra approach is applicable to linear systems having any number of unknowns
and is suitable for immediate implementation in MATLAB.

7.2 SOLUTION OF A TWO-LOOP CIRCUIT

Consider a two-loop resistive circuit with unknown currents I1 and I2 as shown in
Fig. 7.1. Using a combination of Kirchhoff’s voltage law (KVL) and Ohm’s law, a
system of two equations with two unknowns I1 and I2 can be obtained as

10 I1 + 4 I2 = 6 (7.1)

12 I2 + 4 I1 = 9. (7.2)

Equations (7.1) and (7.2) represent a system of equations for I1 and I2 that can be
solved using the four different methods outlined as follows:

6 Ω

9 VI2I1
6 V 4 Ω

8 Ω

+
−

+
−

Figure 7.1 A two-loop resistive circuit.

188
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1. Substitution Method: Solving equation (7.1) for the first variable I1 gives

10 I1 = 6 − 4 I2

I1 =
6 − 4 I2

10
. (7.3)

The current I2 can now be solved by substituting I1 from equation (7.3) into
equation (7.2), which gives

12 I2 + 4
(

6 − 4 I2

10

)
= 9

12 I2 + 2.4 − 1.6 I2 = 9

10.4 I2 = 6.6

I2 =
6.6

10.4
I2 = 0.6346 A. (7.4)

The current I1 can now be obtained by substituting the value of the second vari-
able I2 from equation (7.4) into equation (7.3) as

I1 =
6 − 4(0.6346)

10
I1 = 0.3462 A.

Therefore, the solution of the system of equations (7.1) and (7.2) is given by

(I1, I2) = (0.3462 A, 0.6346 A).

2. Graphical Method: Begin by assuming I1 as the independent variable and I2
as the dependent variable. Solving equation (7.1) for the dependent variable I2
gives

10 I1 + 4 I2 = 6

4 I2 = −10 I1 + 6

I2 = −5
2

I1 +
3
2
. (7.5)

Similarly, solving equation (7.2) for I2 gives

4 I1 + 12 I2 = 9

12 I2 = −4 I1 + 9

I2 = −1
3

I1 +
3
4
. (7.6)

Equations (7.5) and (7.6) are linear equations of the form y = m x + b. The simul-
taneous solution of equations (7.5) and (7.6) is the intersection point of the two
lines. The plot of the two straight lines along with their intersection point is
shown in Fig. 7.2. The intersection point, (I1, I2)≈ (0.35 A, 0.63 A), is the solution
of the 2×2 system of equations (7.1) and (7.2).
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1.0 1.5 2.00.5

0.5

2.0

1.5

1.0

0.0
0.0

5
2

3
2

I2 =  I1 

I2 =  

− +

I2, A

I1, A

Solution: (I1, I2) =  (0.35, 0.63)

− −

1
3

3
4

 I1 − +− −

Figure 7.2 Plot of 2×2 system of equations (7.1) and (7.2).

Note that the graphical method gives only approximate results; therefore, this
method is generally not used when an accurate result is needed. Also, if the two
lines do not intersect, then one of the two possibilities exists:
(i) The two lines are parallel lines (same slope but different y-intercepts) and

the system of equations has no solution.
(ii) The two lines are parallel lines with same slope and y-intercept (the two lines

lie on top of each other; they are the same line) and the system of equations
has infinitely many solutions. In this case, the two equations are dependent
(i.e., one equation can be obtained by performing linear operations on the
other equation).

3. Matrix Algebra Method: The matrix algebra method can also be used to solve
the system of equations given by equations (7.1) and (7.2). Rewriting the system
of equations (7.1) and (7.2) in the form so that the two variables line up gives

10 I1 + 4 I2 = 6 (7.7)

4 I1 + 12 I2 = 9. (7.8)

Now, writing equations (7.7) and (7.8) in matrix form yields[
10 4
4 12

] [
I1
I2

]
=
[

6
9

]
. (7.9)

Equation (7.9) is of the form Ax = b, where

𝐀 =
[

10 4
4 12

]
(7.10)
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is a 2×2 coefficient matrix,

𝐱 =
[

I1
I2

]
(7.11)

is a 2×1 matrix (column vector) of unknowns, and

𝐛 =
[

6
9

]
(7.12)

is a 2×1 matrix on the right-hand side (RHS) of equation (7.9). For any system
of the form Ax = b, the solution is given by

𝐱 = 𝐀−𝟏 𝐛,

where A−1 is the inverse of the matrix A. For a 2×2 system of equations where

𝐀 =
[

a b
c d

]
,

the inverse of the matrix A is given by

A−1 = 1
Δ

[
d −b
−c a

]
,

where Δ = |𝐀| is the determinant of matrix A and is given by

Δ =
||||a b
c d

||||
= a d − b c.

Note that if Δ = |𝐀| = 0, 𝐀−1 does not exist. In other words, the system of
equations Ax = b has no solution. Now, for the two-loop circuit problem,

𝐀 =
[

10 4
4 12

]

=
[

a b
c d

]
.

The inverse of matrix A is given by

𝐀−1 = 1
Δ

[
d −b
−c a

]

= 1
Δ

[
12 −4
−4 10

]
,

where Δ = |𝐀| = a d − c b = (10) (12) − (4) (4) = 104. Therefore, the inverse of
matrix 𝐀 can be calculated as

𝐀−1 = 1
104

[
12 −4
−4 10

]

=
⎡⎢⎢⎢⎣

3
26

− 1
26

− 1
26

5
52

⎤⎥⎥⎥⎦
. (7.13)
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The solution of the system of equations 𝐱 =
[

I1
I2

]
can now be found by mul-

tiplying A−1 (given by equation (7.13)) with the column matrix b (given by
equation (7.12)) as

𝐱 =𝐀−1 𝐛

[
I1
I2

]
=
⎡⎢⎢⎢⎣

3
26

− 1
26

− 1
26

5
52

⎤⎥⎥⎥⎦
[

6
9

]

=

⎡⎢⎢⎢⎢⎣

3
26

(6) +
(
− 1

26

)
(9)(

− 1
26

)
(6) +

(
5

52

)
(9)

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

18 − 9
26

−12 + 45
52

⎤⎥⎥⎥⎦
=
[

0.3462
0.6346

]
.

The solution of the system of equations (7.1) and (7.2) is therefore given by

(I1, I2) = (0.3462 A, 0.6346 A).

4. Cramer’s Rule: For any system Ax = b, the solution of the system of equations
is given by

x1 =
|A1||A| , x2 =

|A2||A| , . . . , xi =
|Ai||A| ,

where |𝐀i| is obtained by replacing the ith column of the matrix A with the col-
umn vector b. Writing the 2×2 system of equations

a11 x1 + a12 x2 = b1

a21 x1 + a22 x2 = b2

in matrix form as [
a11 a12
a21 a22

] [
x1
x2

]
=
[

b1
b2

]
,

Cramer’s rule gives the solution of the system of equations as

x1 =

||||b1 a12
b2 a22

||||||||a11 a12
a21 a22

||||



Trim Size: 8in x 10in Rattan2e c07.tex V1 - 03/17/2021 3:07pm Page 193�

� �

�

7.3 Tension in Cables 193

=
a22 b1 − a12 b2

a11 a22 − a12 a21
,

x2 =

||||a11 b1
a21 b2

||||||||a11 a12
a21 a22

||||
=

a11 b2 − a21 b1

a11 a22 − a12 a21
.

For the two-loop circuit, the 2×2 system of equations is[
10 4
4 12

] [
I1
I2

]
=
[

6
9

]
.

Using Cramer’s rule, the currents I1 and I2 can be determined as

I1 =

||||6 4
9 12

||||||||10 4
4 12

||||
= 6(12) − 9(4)

10(12) − 4(4)

= 36
104

= 0.3462 A,

I2 =

||||10 6
4 9

||||||||10 4
4 12

||||
= 10(9) − 4(6)

10(12) − 4(4)

= 66
104

= 0.6346 A.

Therefore, I1 = 0.3462 A and I2 = 0.6346 A. Note that Cramer’s rule is probably
fastest for solving 2×2 systems, but not faster than MATLAB.

7.3 TENSION IN CABLES

An object weighing 95 N is hanging from a roof with two cables as shown in Fig. 7.3.
Determine the tension in each cable using the substitution, matrix algebra, and
Cramer’s rule methods.
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Since the system shown in Fig. 7.3 is in equilibrium, the sum of all the forces
shown in the free-body diagram must be equal to zero. This implies that all the forces
in the x- and y-directions are equal to zero (see Chapter 4). The components of the
tension T⃗1 in the x- and y-directions are given by −T1 cos(45∘) N and T1 sin(45∘) N,
respectively. Similarly, the components of the tension T⃗2 in the x- and y-directions
are given by T2 cos(30∘) N and T2 sin(30∘) N, respectively. The components of the
object weight is 0 N in the x-direction and −95 N in the y-direction. Summing all the
forces in the x-direction gives

−T1 cos(45∘) + T2 cos(30∘) = 0

−0.7071 T1 + 0.8660 T2 = 0. (7.14)

y

x

95 N
95 N

T1 T2

45°

45°

30°

30°

Figure 7.3 A 95 N object hanging from two cables.

Similarly, summing the forces in the y-direction yields

T1 sin(45∘) + T2 sin(30∘) = 95

0.7071 T1 + 0.5 T2 = 95. (7.15)

Equations (7.14) and (7.15) make a 2×2 system of equations with two unknowns T1
and T2 that can be written in matrix form as[

−0.7071 0.8660
0.7071 0.5

] [
T1
T2

]
=
[

0
95

]
. (7.16)

The solution of the system of equations (T1 and T2) will now be obtained using three
methods: the substitution method, the matrix algebra method, and Cramer’s rule.

1. Substitution Method: Using equation (7.14), the second variable T2 is found in
terms of the first variable T1 as

0.8660 T2 = 0.7071 T1

T2 = 0.8165 T1. (7.17)

Substituting T2 from equation (7.17) into equation (7.15) gives

0.7071 T1 + 0.5 (0.8165 T1) = 95

1.115 T1 = 95

T1 = 85.17 N. (7.18)
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Now, substituting T1 obtained in equation (7.18) into equation (7.17) yields

T2 = 0.8165 (85.17)

= 69.55 N.

Therefore, T1 = 85.2 N and T2 = 69.6 N.

2. Matrix Algebra Method: The two unknowns (T1 and T2) in the 2×2 system of
equations (7.14) and (7.15) are now determined using the matrix algebra method.
Write equations (7.14) and (7.15) in the matrix form as

𝐀𝐱 = 𝐛, (7.19)

where matrices 𝐀, 𝐱, and 𝐛 are given by

𝐀 =
[
−0.7071 0.8660
0.7071 0.5

]

𝐱 =
[

T1
T2

]

𝐛 =
[

0
95

]
. (7.20)

Therefore, the solution of the 2×2 system of equations 𝐱 =
[

T1
T2

]
can be found by

solving equation (7.19) as
𝐱 = 𝐀−𝟏 𝐛, (7.21)

where 𝐀−1 is the inverse of matrix 𝐀. If 𝐀 =
[

a b
c d

]
, then

𝐀−1 = 1
Δ

[
d −b
−c a

]
,

where Δ = a d − b c. Since, for this example, a = −0.7071, b = 0.8660, c = 0.7071,
and d = 0.5, therefore,

Δ = (−0.7071) (0.5) − (0.7071) (0.8660)

= −0.9659

𝐀−1 = 1
−0.9659

[
0.5 −0.8660

−0.7071 −0.7071

]

=
[
−0.5177 0.8966
0.7321 0.7321

]
. (7.22)

Substituting matrices 𝐀−1 from equation (7.22) and 𝐛 from equation (7.20) into
equation (7.21) gives

𝐱 =
[
−0.5177 0.8966
0.7321 0.7321

] [
0

95

]
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[
T1
T2

]
=

[
0 + 0.8966(95)

0 + 0.7321(95)

]

=
[

85.2
69.6

]
.

Therefore, T1 = 85.2 N and T2 = 69.6 N.

3. Cramer’s Rule: The two unknowns (T1 and T2) in the 2×2 system of
equations (7.14) and (7.15) are now determined using Cramer’s rule. Using
matrix equation (7.19), the tensions T1 and T2 can be found as

T1 =

|||| 0 0.8660
95 0.5

||||||||−0.7071 0.866
0.7071 0.5

||||
= 0 − 95(0.8660)

−0.7071(0.5) − 0.7071(0.8660)

= −82.27
−0.9659

= 85.2 N

T2 =

||||−0.7071 0
0.7071 95

||||
−0.9659

= −0.7071(95) − 0
−0.9659

= −67.16
−0.9659

= 69.6 N.

Therefore, T1 = 85.2 N and T2 = 69.6 N.

7.4 FURTHER EXAMPLES OF SYSTEMS OF EQUATIONS
IN ENGINEERING

Example
7-1

Reaction Forces on a Vehicle: The weight of a vehicle is supported by reaction
forces at its front and rear wheels as shown in Fig. 7.4. If the weight is W = 4800
lb, the reaction forces R1 and R2 satisfy the equation

R1 + R2 − 4800 = 0. (7.23)
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Also, suppose that
6 R1 − 4 R2 = 0. (7.24)

(a) Find R1 and R2 using the substitution method.

(b) Write the system of equations (7.23) and (7.24) in the matrix form 𝐀𝐱 = 𝐛,

where 𝐱 =
[

R1
R2

]
.

(c) Find R1 and R2 using the matrix algebra method. Perform all computations by
hand and show all steps.

(d) Find R1 and R2 using Cramer’s rule.

R1 R2

W

Figure 7.4 Reaction forces acting on a vehicle.

Solution (a) Substitution Method: Using equation (7.23), find R1 in terms of R2 as

R1 = 4800 − R2. (7.25)

Substituting R1 from equation (7.25) into equation (7.24) gives

6 (4800 − R2) − 4 R2 = 0

28, 800 − 6 R2 − 4 R2 = 0

10 R2 = 28, 800

R2 = 2880 lb. (7.26)

Now, substituting R2 from equation (7.26) into equation (7.25) yields

R1 = 4800 − 2880

= 1920 lb.

Therefore, R1 = 1920 lb and R2 = 2880 lb.

(b) Writing equations (7.23) and (7.24) in the matrix form gives[
1 1
6 −4

] [
R1
R2

]
=
[

4800
0

]
. (7.27)
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(c) Matrix Algebra Method: From the matrix equation (7.27), the matrices 𝐀, 𝐱,
and 𝐛 are given by

𝐀 =
[

1 1
6 −4

]
(7.28)

𝐛 =
[

4800
0

]
(7.29)

𝐱 =
[

R1
R2

]
. (7.30)

The reaction forces can be found by finding the inverse of matrix 𝐀 and then
multiplying this with column matrix 𝐛 as

𝐱 = 𝐀−𝟏 𝐛,

where

𝐀−1 = 1|𝐀|
[
−4 −1
−6 1

]
(7.31)

and

|𝐀| = ||||1 1
6 −4

||||
= (1)(−4) − (6)(1)

= −10. (7.32)

Substituting equation (7.32) in equation (7.31), the inverse of matrix 𝐀 is
given by

𝐀−1 = 1
−10

[
−4 −1
−6 1

]

=
[

0.4 0.1
0.6 −0.1

]
. (7.33)

The reaction forces can now be found by multiplying 𝐀−1 in equation (7.33)
with matrix 𝐛 given in equation (7.29) as

𝐱 =
[

0.4 0.1
0.6 −0.1

] [
4800

0

]
[

R1
R2

]
=
[
(0.4)(4800) + 0
(0.6)(4800) + 0

]

=
[

1920
2880

]
.

Therefore, R1 = 1920 lb and R2 = 2880 lb.
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(d) Cramer’s Rule: The reaction forces R1 and R2 can be found by solving the
system of equations (7.23) and (7.24) using Cramer’s rule as

R1 =

||||4800 1
0 −4

||||
−10

= (4800)(−4) − (0)(1)
−10

= 1920.

R2 =

||||1 4800
6 0

||||
−10

= (1)(0) − (6)(4800)
−10

= 2880.

Therefore, R1 = 1920 lb and R2 = 2880 lb.

Example
7-2

External Forces Acting on a Truss: A two-bar truss is subjected to external forces
in both the horizontal and vertical directions as shown in Fig. 7.5. The forces F1
and F2 satisfy the following system of equations:

0.8 F1 + 0.8 F2 − 200 = 0 (7.34)

0.6 F1 − 0.6 F2 − 100 = 0. (7.35)

(a) Find F1 and F2 using the substitution method.

(b) Write the system of equations (7.34) and (7.35) in the matrix form 𝐀𝐱 = 𝐛,

where 𝐱 =
[

F1
F2

]
.

(c) Find F1 and F2 using the matrix algebra method. Perform all computations by
hand and show all steps.

(d) Find F1 and F2 using Cramer’s rule.

8 ft

200 lb

F1

F2100 lb 100 lb

6 ft

6 ft

200 lb

Figure 7.5 A truss subjected to external forces.



Trim Size: 8in x 10in Rattan2e c07.tex V1 - 03/17/2021 3:07pm Page 200�

� �

�

200 Chapter 7 Systems of Equations in Engineering

Solution (a) Substitution Method: Using equation (7.34), find force F1 in terms of F2 as

0.8 F1 = 200 − 0.8 F2

F1 = 250 − F2. (7.36)

Substituting F1 from equation (7.36) into equation (7.35) gives

0.6 (250 − F2) − 0.6 F2 = 100

250 − 2 F2 = 166.67

F2 =
(250 − 166.67)

2
= 41.67 lb. (7.37)

Now, substituting F2 from equation (7.37) into equation (7.36) yields

F1 = 250 − 41.67

= 208.33 lb.

Therefore, F1 = 208.33 lb and F2 = 41.67 lb.

(b) Writing equations (7.34) and (7.35) in the matrix form yields[
0.8 0.8
0.6 −0.6

] [
F1
F2

]
=
[

200
100

]
. (7.38)

(c) Matrix Algebra Method: Writing matrix equation in (7.38) in the form 𝐀𝐱 = 𝐛
gives

𝐀 =
[

0.8 0.8
0.6 −0.6

]
(7.39)

𝐛 =
[

200
100

]
(7.40)

𝐱 =
[

F1
F2

]
. (7.41)

The forces F1 and F2 can be found by finding the inverse of matrix 𝐀 and then
multiplying this with matrix 𝐛 as

𝐱 = 𝐀−𝟏 𝐛,

where

𝐀−1 = 1|A|
[
−0.6 −0.8
−0.6 0.8

]
(7.42)

and

|𝐀| = ||||0.8 0.8
0.6 −0.6

||||
= (0.8)(−0.6) − (0.6)(0.8)

= −0.96. (7.43)
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Substituting equation (7.43) in equation (7.42), the inverse of matrix 𝐀 is
given by

𝐀−1 = 1
−0.96

[
−0.6 −0.8
−0.6 0.8

]

=
[

0.625 0.833
0.625 −0.833

]
. (7.44)

The forces F1 and F2 can now be found by multiplying 𝐀−1 in equation (7.44)
by column matrix 𝐛 given in equation (7.40) as

𝐱 =
[

0.625 0.833
0.625 −0.833

] [
200
100

]
[

F1
F2

]
=
[
(0.625)(200) + (0.833)(100)
(0.625)(200) + (−0.833)(100)

]

=
[

208.33
41.67

]
lb

Therefore, F1 = 208.33 lb and F2 = 41.67 lb.

(d) Cramer’s Rule: The forces F1 and F2 can be found by solving the system of
equations (7.34) and (7.35) using Cramer’s rule as

F1 =

||||200 0.8
100 −0.6

||||
−0.96

= (200)(−0.6) − (100)(0.8)
−0.96

= 208.33 lb

F2 =

||||0.8 200
0.6 100

||||
−0.96

= (0.8)(100) − (0.6)(200)
−0.96

= 41.67 lb

Therefore, F1 = 208.33 lb and R2 = 41.67 lb.

Example
7-3

Summing OP-AMP Circuit: A summing OP-AMP circuit is shown in Fig. 7.6. An
analysis of the OP-AMP circuit shows that the conductances G1 and G2 in mho (℧)
satisfy the following system of equations:

10 G1 + 5 G2 = 125 (7.45)

9 G1 − 19 = 4 G2. (7.46)
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(a) Find G1 and G2 using the substitution method.

(b) Write the system of equations (7.45) and (7.46) in the matrix form 𝐀𝐱 = 𝐛,

where 𝐱 =
[

G1
G2

]
.

(c) Find G1 and G2 using the matrix algebra method. Perform all computations
by hand and show all steps.

(d) Find G1 and G2 using Cramer’s rule.

+

−

− Vcc

+ Vcc

+
−

GF

G1

G2

V1

Vo

+−

V2

+−

Figure 7.6 A summing OP-AMP circuit.

Solution (a) Substitution Method: Using equation (7.45), find the admittance G1 in terms
of G2 as

10 G1 = 125 − 5 G2

G1 = 12.5 − 0.5 G2. (7.47)

Substituting G1 from equation (7.47) into equation (7.46) gives

9 (12.5 − 0.5 G2) − 19 = 4 G2

93.5 − 4.5 G2 = 4 G2

93.5 = 8.5 G2

G2 = 11 ℧. (7.48)

Now, substituting G2 from equation (7.48) into equation (7.47) yields

G1 = 12.5 − 0.5(11)

= 7.0 ℧.

Therefore, G1 = 7 ℧ and G2 = 11 ℧.

(b) Rewrite equations (7.45) and (7.46) in the form

10 G1 + 5 G2 = 125 (7.49)

9 G1 − 4 G2 = 19. (7.50)

Now, write equations (7.49) and (7.50) in matrix form as[
10 5
9 −4

] [
G1
G2

]
=
[

125
19

]
. (7.51)
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(c) Matrix Algebra Method: Writing the matrix equation in (7.51) in the form
𝐀𝐱 = 𝐛 gives

𝐀 =
[

10 5
9 −4

]
(7.52)

𝐛 =
[

125
19

]
(7.53)

𝐱 =
[

G1
G2

]
. (7.54)

The admittance G1 and G2 can be found by finding the inverse of matrix 𝐀 and
then multiplying this with matrix 𝐛 as

𝐱 = 𝐀−𝟏 𝐛,

where

𝐀−1 = 1|𝐀|
[
−4 −5
−9 10

]
(7.55)

and

|𝐀| = ||||10 5
9 −4

||||
= (10)(−4) − (5)(9)

= −85. (7.56)

Substituting equation (7.56) in equation (7.55), the inverse of matrix 𝐀 is
given as

𝐀−1 = 1
−85

[
−4 −5
−9 10

]

=
⎡⎢⎢⎢⎣

4
85

5
85

9
85

−10
85

⎤⎥⎥⎥⎦
. (7.57)

The admittances G1 and G2 can now be found by multiplying 𝐀−1 in equation
(7.57) and the column matrix 𝐛 given in equation (7.53) as

𝐱 =
⎡⎢⎢⎢⎣

4
85

5
85

9
85

−10
85

⎤⎥⎥⎥⎦
[

125
19

]

[
G1
G2

]
=

⎡⎢⎢⎢⎢⎣

( 4
85

)
(125) +

(
5
85

)
(19)

( 9
85

)
(125) +

(
−10

85

)
(19)

⎤⎥⎥⎥⎥⎦
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=
⎡⎢⎢⎢⎣
(100 + 19)

17
(225 − 38)

17

⎤⎥⎥⎥⎦
=
[

7
11

]
℧.

Therefore, G1 = 7 ℧ and G2 = 11 ℧.

(d) Cramer’s Rule: The admittances G1 and G2 can be found by solving the system
of equations (7.45) and (7.46) using Cramer’s rule as

G1 =

||||125 5
19 −4

||||
−85

= (125)(−4) − (19)(5)
−85

= 7 ℧

G2 =

||||10 125
9 19

||||
−85

= (10)(19) − (9)(125)
−85

= 11 ℧.

Therefore, G1 = 7 ℧ and G2 = 11 ℧.

Example
7-4

Force on the Gastrocnemius Muscle: A driver applies a steady force of FP = 30 N
against a gas pedal, as shown in Fig. 7.7. The free-body diagram of the driver’s foot
is also shown. Based on the x–y coordinate system shown, the force of the gastroc-
nemius muscle Fm and the weight of the foot WF satisfy the following system of
equations:

Fm cos 60∘ − WF cos 30∘ = Rx (7.58)

Fm sin 60∘ − WF sin 30∘ = Ry − FP, (7.59)

where Rx and Ry are the reactions at the ankle.

(a) Suppose Rx = 70√
3

N and Ry = 120 N. Write the system of equations in terms

of Fm and WF .

(b) Find Fm and WF using the substitution method.
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(c) Write the system of equations (7.58) and (7.59) in the matrix form 𝐀𝐱 = 𝐛,

where 𝐱 =
[

Fm
WF

]
.

(d) Find Fm and WF using the matrix algebra method. Perform all computations
by hand and show all steps.

(e) Find Fm and WF using Cramer’s rule.

Gas pedal

Driver

Fm

Rx

y

x

Fp

WF

Ry60°60°

Figure 7.7 A driver applying a steady force against the gas pedal.

Solution (a) Rewriting equations (7.58) and (7.59) in terms of the given information yields

0.5 Fm − 0.866 WF = 40.4 (7.60)

0.866 Fm − 0.5 WF = 90. (7.61)

(b) Substitution Method: Using equation (7.60), find the force Fm in terms of
WF as

0.5 Fm = 40.4 + 0.866 WF

Fm = 80.8 + 1.732 WF . (7.62)

Substituting Fm from equation (7.62) into equation (7.61) gives

0.866 (80.8 + 1.732 WF ) − 0.5 WF = 90

70 + 1.5 WF − 0.5 WF = 90

WF = 20 N. (7.63)

Now, substituting WF from equation (7.63) into equation (7.62) yields

Fm = 80.8 + 1.732(20)

= 115.4 N.

Therefore, Fm = 115.4 N and WF = 20 N.
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(c) Writing equations (7.60) and (7.61) in the matrix form 𝐀𝐱 = 𝐛 gives[
0.5 −0.866

0.866 −0.5

] [
Fm
WF

]
=
[

40.4
90

]
, (7.64)

where

𝐀 =
[

0.5 −0.866
0.866 −0.5

]
, (7.65)

𝐛 =
[

40.4
90

]
, (7.66)

and 𝐱 =
[

Fm
WF

]
. (7.67)

(d) Matrix Algebra Method: The forces Fm and WF can be found by finding the
inverse of the matrix 𝐀 and then multiplying this by vector 𝐛 as

𝐱 = 𝐀−𝟏 𝐛,

where

𝐀−1 = 1|𝐀|
[

−0.5 0.866
−0.866 0.5

]
, (7.68)

and |𝐀| = |||| 0.5 −0.866
0.866 −0.5

||||
= (0.5)(−0.5) − (0.866)(−0.866)

= 0.5. (7.69)

Substituting equation (7.69) in equation (7.68), the inverse of matrix 𝐀 is
given as

𝐀−1 = 1
0.5

[
−0.5 0.866

−0.866 0.5

]

=
[

−1.0 1.732
−1.732 1.0

]
. (7.70)

The forces Fm and WF can now be found by multiplying 𝐀−1 in equation (7.70)
and the column matrix 𝐛 given in equation (7.66) as

𝐱 =
[

−1.0 1.732
−1.732 1.0

] [
40.4
90

]
[

Fm
WF

]
=
[
−1.0 (40.4) + 1.732 (90)
−1.732 (40.4) + 1.0 (90)

]

=
[

115.4
20.0

]
N.

Therefore, Fm = 115.4 N and WF = 20 N.
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(e) Cramer’s Rule: The forces Fm and WF can be found by solving the system of
equations (7.60) and (7.61) using Cramer’s rule as

Fm =

||||40.4 −0.866
90 −0.5

||||
0.5

= (40.4)(−0.5) − (90)(−0.866)
0.5

= 115.4 N

WF =

|||| 0.5 40.4
0.866 90

||||
0.5

= (0.5)(90) − (0.866)(40.4)
0.5

= 20.0 N.

Therefore, Fm = 115.4 N and WF = 20 N.

Example
7-5

Two-Component Blending of Liquids: An environmental engineer wishes to blend
a single mixture of insecticide spray solution of volume V = 1000 L and concentra-
tion C = 0.15 from two spray solutions of concentrations c1 = 0.12 and c2 = 0.17.
The required volumes of the two spray solutions v1 and v2 can be determined from
a system of equations describing conditions for volume and concentration, respec-
tively, as

v1 + v2 = V (7.71)

c1 v1 + c2 v2 = C V. (7.72)

(a) Knowing that V = 1000 L, c1 = 0.12, c2 = 0.17, and C = 0.15, rewrite the sys-
tem of equations in terms of v1 and v2.

(b) Find v1 and v2 using the substitution method.

(c) Write the system of equations (7.71) and (7.72) in the matrix form 𝐀𝐱 = 𝐛,

where 𝐱 =
[

v1
v2

]
.

(d) Find v1 and v2 using the matrix algebra method. Perform all computations by
hand and show all steps.

(e) Find v1 and v2 using Cramer’s rule.

Solution (a) Rewriting equations (7.71) and (7.72) in terms of the given information yields

v1 + v2 = 1000 (7.73)

0.12 v1 + 0.17 v2 = 150. (7.74)
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(b) Substitution Method: Using equation (7.73), find the volume v2 in terms of
v1 as

v2 = 1000 − v1. (7.75)

Substituting v2 from equation (7.75) into equation (7.74) gives

0.12 v1 + 0.17 (1000 − v1) = 150

0.12 v1 + 170 − 0.17 v1 = 150

−0.05 v1 = −20

v1 = 400. (7.76)

Now, substituting v1 from equation (7.76) into equation (7.75) yields

v2 = 1000 − 400

= 600.

Therefore, v1 = 400 L and v2 = 600 L.

(c) Writing equations (7.73) and (7.74) in matrix form 𝐀𝐱 = 𝐛 gives[
1 1

0.12 0.17

] [
v1
v2

]
=
[

1000
150

]
, (7.77)

where

𝐀 =
[

1 1
0.12 0.17

]
, (7.78)

𝐛 =
[

1000
150

]
, (7.79)

and 𝐱 =
[

v1
v2

]
. (7.80)

(d) Matrix Algebra Method: The volumes v1 and v2 can be found by finding the
inverse of the matrix 𝐀 and then multiplying this by column vector 𝐛 as

𝐱 = 𝐀−𝟏 𝐛,

where

𝐀−1 = 1|𝐀|
[

0.17 −1
−0.12 1

]
(7.81)

and |𝐀| = |||| 1 1
0.12 0.17

||||
= (1)(0.17) − (0.12)(1)

= 0.05. (7.82)
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Substituting equation (7.82) in equation (7.81), the inverse of matrix 𝐀 is
given as

𝐀−1 = 1
0.05

[
0.17 −1
−0.12 1

]

=
[

3.4 −20
−2.4 20

]
. (7.83)

The volumes v1 and v2 can now be found by multiplying 𝐀−1 in equation (7.83)
and the column vector 𝐛 given in equation (7.79) as

𝐱 =
[

3.4 −20
−2.4 20

] [
1000
150

]
[

v1
v2

]
=
[

3.4 (1000) − 20 (150)
−2.4 (1000) + 20 (150)

]

=
[

400
600

]
.

Therefore, v1 = 400 L and v2 = 600 L.

(e) Cramer’s Rule: The volumes v1 and v2 can be found by solving the system of
equations (7.73) and (7.74) using Cramer’s rule as

v1 =

||||1000 1
150 0.17

||||
0.05

= (1000)(0.17) − (150)(1)
0.05

= 400

v2 =

|||| 1 1000
0.12 150

||||
0.05

= (1)(150) − (0.12)(1000)
0.05

= 600.

Therefore, v1 = 400 L and v2 = 600 L.
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PROBLEMS

7-1. Consider the two-loop circuit shown in
Fig. P7.1. The currents I1 and I2 (in
amps) satisfy the following system of
equations:

−5000I1 + 1000I2 = −8

1000I1 = 10 + 3000I2

(a) Find I1 and I2 using the substitution
method.

(b) Write the system of equations in the

matrix form𝐀𝐈 = 𝐛, where 𝐈 =
[

I1
I2

]
.

(c) Find I1 and I2 using Cramer’s rule.
(d) Find I1 and I2 using the matrix

algebra method. Perform all matrix
computations by hand, and show all
steps.

8 V 10 V1 kΩ 

2 kΩ 4 kΩ 

I1 I2

+
−

+
−

Figure P7.1 Two-loop circuit for problem P7-1.

7-2. Consider the two-loop circuit shown in
Fig. P7.2. The currents I1 and I2 (in
amps) satisfy the following system of
equations:

18 I1 − 10 I2 − 246 = 0

22 I2 − 10 I1 = −334

334 V246 V

8 Ω 12 Ω

10 Ω
I1 I2

+
−

+
−

Figure P7.2 Two-loop circuit for problem P7-2.

(a) Find I1 and I2 using the substitution
method.

(b) Write the system of equations in the

matrix form𝐀𝐈 = 𝐛, where 𝐈 =
[

I1
I2

]
.

(c) Find I1 and I2 using the matrix alge-
bra method. Perform all computa-
tions by hand and show all steps.

(d) Find I1 and I2 using Cramer’s rule.

7-3. Consider the two-loop circuit shown in
Fig. P7.3. The currents I1 and I2 (in
amps) satisfy the following system of
equations:

15I1 + 5I2 = 20

25I2 + 5I1 − 30 = 0

20 V 30 V

20 Ω10 Ω

5 Ω
I1

I2
+
−

+
−

Figure P7.3 Two-loop circuit for problem P7-3.

(a) Find I1 and I2 using the substitution
method.

(b) Write the system of equations in the

matrix form𝐀𝐈 = 𝐛, where 𝐈 =
[

I1
I2

]
.

(c) Find I1 and I2 using the matrix alge-
bra method. Perform all computa-
tions by hand and show all steps.

(d) Find I1 and I2 using Cramer’s rule.

7-4. Consider the two-node circuit shown in
Fig. P7.4. The voltages V1 and V2 (in
volts) satisfy the following system of
equations:

4 V1 − V2 = 20

−3 V1 + 8 V2 = 40

(a) Find V1 and V2 using the substitu-
tion method.

(b) Write the system of equations in
the matrix form 𝐀𝐕 = 𝐛, where

𝐕 =
[

V1
V2

]
.
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20 V10 V

10 Ω 30 Ω

20 Ω 20 Ω

V1 V220 Ω

+
−

+
−

Figure P7.4 Two-node circuit for problem P7-4.

(c) Find V1 and V2 using the matrix
algebra method. Perform all com-
putations by hand and show all
steps.

(d) Find V1 and V2 using Cramer’s rule.

7-5. Consider the two-node circuit shown in
Fig. P7.5. The voltages V1 and V2 (in
volts) satisfy the following system of
equations:

5V1 − 2V2 = 20

−V1 + 2V2 = 5

10 V10 V

5 kΩ 5 kΩ 10 kΩ 

10 kΩ 10 kΩ 

V1 V2

+
−

+
−

Figure P7.5 Two-node circuit for problem P7-5.

(a) Write the system of equations in
the matrix form 𝐀𝐕 = 𝐛, where

𝐕 =
[

V1
V2

]
.

(b) Find V1 and V2 using Cramer’s rule.
Show all steps.

(c) Find V1 and V2 using the matrix
algebra method. Perform all matrix
computations by hand, and show all
steps.

(d) Find V1 and V2 using the substitu-
tion method. Show all steps.

7-6. Consider the two-node circuit shown in
Fig. P7.6. The voltages V1 and V2 (in
volts) satisfy the following system of
equations:

0.2 V1 − 0.1 V2 = 4

0.3 V2 − 0.1 V1 + 2 = 0

A 2A 4 10 Ω 5 Ω

V1 V210 Ω

↑

↑

Figure P7.6 Two-node circuit for problem P7-6.

(a) Find V1 and V2 using the substitu-
tion method.

(b) Write the system of equations in
the matrix form 𝐀𝐕 = 𝐛, where

𝐕 =
[

V1
V2

]
.

(c) Find V1 and V2 using the matrix
algebra method. Perform all com-
putations by hand and show all
steps.

(d) Find V1 and V2 using Cramer’s rule.

7-7. A two-loop circuit is configured as
shown in Fig. P7.7 with V1 = 200 V, V2 =
100 V, R1 = R2 = R3 = 75 Ω. The volt-
ages V1 and V2 satisfy the following sys-
tem of equations:

(V1 − V2) = R2I2 + (R1 + R2)I1

0 = R2I1 + (R2 + R3)I2 + V2

V2

V1

I1

R1

R3

R2
I2

+
−

+
−

Figure P7.7 Two-loop circuit for problem P7-7.
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(a) Substitute the given values and
write the system of equations
in the matrix form 𝐀𝐱 = 𝐛, where

𝐱 =
[

I1
I2

]
.

(b) Find I1 and I2 using the matrix
algebra method. Perform all matrix
computations by hand and show
all steps.

(c) Find I1 and I2 using Cramer’s rule.
(d) Based on your answers from parts

(b) and (c), were the currents I1 and
I2 drawn in the correct orientation?
How do you know?

7-8. A summing OP-AMP circuit is shown in
Fig. 7.6. An analysis of the OP-AMP cir-
cuit shows that the admittances G1 and
G2 in mho (℧) satisfy the following sys-
tem of equations:

5 G1 − 145 = −10 G2

−9 G2 + 71 = −4 G1

(a) Find G1 and G2 using the substitu-
tion method.

(b) Write the system of equations in
the matrix form 𝐀𝐆 = 𝐛, where

𝐆 =
[

G1
G2

]
.

(c) Find G1 and G2 using the matrix
algebra method. Perform all com-
putations by hand and show all
steps.

(d) Find G1 and G2 using Cramer’s rule.

7-9. A summing OP-AMP circuit is shown in
Fig. 7.6. An analysis of the OP-AMP cir-
cuit shows that the admittances G1 and
G2 in mho (℧) satisfy the following sys-
tem of equations:

20 G1 + 20 G2 = 0.8

10 G1 + 30 G2 = 0.5

(a) Find G1 and G2 using the substitu-
tion method.

(b) Write the system of equations (in
the matrix form 𝐀𝐆 = 𝐛, where

𝐆 =
[

G1
G2

]
.

(c) Find G1 and G2 using the matrix
algebra method. Perform all

computations by hand and show
all steps.

(d) Find G1 and G2 using Cramer’s rule.

7-10. A 20 kg object is suspended by two
cables as shown in Fig. P7.10. The ten-
sions T1 and T2 satisfy the following sys-
tem of equations:

0.5 T1 = 0.866 T2

0.5 T2 + 0.866 T1 = 196

(a) Write the system of equations in
the matrix form 𝐀𝐓 = 𝐛, where

𝐓 =
[

T1
T2

]
. What is the dimension

of 𝐀 and 𝐛?
(b) Find T1 and T2 using the matrix

algebra method. Perform all matrix
computation by hand.

(c) Find T1 and T2 using Cramer’s rule.

20 kg
g = 9.8 m/s2

x

y

60°
30°

60° 30°

W 

T1

T2

Figure P7.10 A 20 kg object suspended by two
cables in problem P7-10.

7-11. A 60 lb weight is suspended by two
cables, as shown in Fig. P7.11. The ten-
sions T1 and T2 satisfy the following sys-
tem of equations:

T1 cos(30∘) = T2 cos(45∘)

T1 sin(30∘) + T2 sin(45∘) − 60 = 0

(a) Write the system of equations in
the matrix form 𝐀𝐱 = 𝐛, where

𝐱 =
[

T1
T2

]
.

(b) Find T1 and T2 using the substitu-
tion method.

(c) Find T1 and T2 using the matrix
algebra method. Perform all matrix
computations by hand and show
all steps.

(d) Find T1 and T2 using Cramer’s rule.
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60 lb
g

x

y

45°
30°

45° 30°

W 

T2

T1

Figure P7.11 A 60 lb weight suspended by two
cables for problem P7-11.

7-12. A two-bar truss supports a weight of
W = 750 lb as shown in Fig. P7.12. The
forces F1 and F2 satisfy the following
system of equations:

0.866 F1 = F2

0.5 F1 = 750

(a) Write the system of equations in
the matrix form 𝐀𝐅 = 𝐛, where

𝐅 =
[

F1
F2

]
.

(b) Find F1 and F2 using the matrix
algebra method. Perform all matrix
computations by hand and show all
steps.

(c) Find F1 and F2 using Cramer’s rule.

W

W

F2

F1

x

y

30° 30°

Figure P7.12 A two-bar truss supporting a weight
for problem P7-12.

7-13. A free-body diagram of the arm show-
ing the vertical and horizontal compo-
nents of the force exerted by the del-
toid muscle is shown in Fig. P7.13. The
horizontal FH and vertical FV compo-
nents of the deltoid muscle force for the

configuration shown in Fig. P7.13 satisfy
the system of equations

FV = 0.22FH

10 − 0.1FV + 0.01FH = 0

where FH and FV are measured in New-
tons (N).
(a) Find FH and FV using the substitu-

tion method.
(b) Write the system of equations in

the matrix form 𝐀𝐅 = 𝐛, where

𝐅 =
[

FV
FH

]
(c) Find FH and FV using Cramer’s rule.

Show all steps.
(d) Find FH and FV using the matrix

algebra method. Perform all matrix
computations by hand and show all
steps.

Fapplied

Fdeltoid

FH

FV

Figure P7.13 Forces exerted by the deltoid muscle.

7-14. A force F = 100 N is applied to a two-bar
truss as shown in Fig. P7.14. The forces
F1 and F2 satisfy the following system of
equations:

−0.5548 F1 − 0.8572 F2 = −100

0.832 F1 = 0.515F2

F
2

3

FBD:

1

F

F1 F2

x

y
56.3°

59.0°

Figure P7.14 A 100 N force applied to a two-bar
truss for problem P7-14.
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(a) Write the system of equations in the
matrix form 𝐀𝐅 = 𝐛, where

F =
[

F1
F2

]
.

(b) Find F1 and F2 using the matrix
algebra method. Perform all matrix
computations by hand and show all
steps.

(c) Find F1 and F2 using Cramer’s rule.

7-15. When flying eastward with the jet
stream, a passenger jet shown in Fig.
P7.15 takes 8 hours to fly 9120 miles.
When traveling westward against the
jet stream, the same jet takes 3 hours
to fly 2340 miles. The following system
of equations describes the relationship
between the velocity of the jet in still air
vo and the velocity of the jet stream vj,
measured in mph:

3(vo − vj) = 2340

8(vo + vj) = 9120

(a) Rewrite the system of equations
in the matrix form 𝐀𝐕 = 𝐛, where

𝐕 =
[

vo
vj

]
.

(b) Find vo and vj using the substitution
method. Show all steps.

(c) Find vo and vj using Cramer’s rule.
Show all steps.

(d) Find vo and vj using the matrix
algebra method. Perform all matrix
computations by hand, and show all
steps.

Figure P7.15 Passenger jet for problem P7.15.

7-16. The weight of a vehicle is supported
by reaction forces at its front and rear
wheels as shown in Fig. P7.16. If the
weight of the vehicle is W = 4800 lb, the
reaction forces R1 and R2 satisfy the fol-
lowing system of equations:

R1 + R2 − 4800 = 0

6 R1 − 4 R2 = 0

(a) Find R1 and R2 using the substitu-
tion method.

(b) Write the system of equations in the
matrix form 𝐀𝐱 = 𝐛, where

x =
[

R1
R2

]
.

(c) Find R1 and R2 using the matrix
algebra method. Perform all matrix
computations by hand and show all
steps.

(d) Find R1 and R2 using Cramer’s rule.

R1 R2

W

Figure P7.16 A vehicle supported by reaction
forces.

7-17. A missile guidance system tracks two
types of cruise missiles fired from two
separate locations, which are 3240 miles
apart. The missiles are aimed and trav-
eling toward the same target at different
velocities. If missile 1 shown in Fig. P7.17
travels 100 mph faster than missile 2 and
they both reach the target in 4 hours,
the following system of equations can be
used to determine the velocities m1 and
m2 of each missile (in mph):

4m1 + 4m2 = 3240

m1 = 100 + m2

(a) Find m1 and m2 using the substitu-
tion method.
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(b) Write the system of equations in
the matrix form 𝐀𝐌 = 𝐛, where

𝐌 =
[

m1
m2

]
.

(c) Find m1 and m2 using Cramer’s rule.
Show all steps.

(d) Find m1 and m2 using the matrix
algebra method. Perform all matrix
computations by hand, and show all
steps.

Figure P7.17 Cruise missile for problem P7-17.

7-18. Solve problem P7-16 if the system of
equations is given by

R1 + R2 = 5000

4 R1 = 6 R2

7-19. A fighter jet shown in Fig. P7.19 travels
directly toward a missile launched 2500
miles away. If the jet is flying 150 mph
faster than the missile and they meet in
2 hours, the velocity v1 of the jet and the
velocity v2 of the missile satisfy the fol-
lowing system of equations:

2v1 + 2v2 = 2500

v1 = v2 + 150

(a) Write the system of equations in
the matrix form 𝐀𝐱 = 𝐛, where

𝐱 =
[

v1
v2

]
.

(b) Determine v1 and v2 using the
matrix algebra method. Perform all
matrix computations by hand and
show all steps.

(c) Determine v1 and v2 using Cramer’s
rule.

(d) Determine v1 and v2 using the sub-
stitution method. Perform all nec-
essary computations and show all
steps.

Figure P7.19 Fighter jet for problem P7-19.

7-20. A truck weighing W = 2000 lb is
parked on an inclined driveway (𝜃 =
35∘) as shown in Fig. P7.20. The forces
F and N satisfy the following system of
equations:

−0.8192 F + 0.5736 N = 0

0.8192 N + 0.5736 F = 2000

where forces F and N are in lb.

W

N

F

F N
FBD:

g

W

x

y θ

θ

Figure P7.20 A truck parked on an inclined
driveway.

(a) Write the system of equations in the
matrix form 𝐀𝐱 = 𝐛, where

x =
[

F
N

]
.

(b) Find F and N using the matrix
algebra method. Perform all matrix
computations by hand and show all
steps.

(c) Find F and N using Cramer’s rule.

7-21. A chemical engineer is to combine two
liquids of differing saline concentrations
as shown in Fig. P7.21. If Solution A is
75% saline and Solution B is 25% saline,
the combination of both solutions such
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that the resulting mixture is 60% saline
satisfies the system of equations given
below, where VA and VB are the vol-
umes of each individual solution and VT
is the total volume of the mixture.

VA + VB − VT = 0

0.75VA + 0.25VB − 0.60VT = 0

Suppose that the total volume is VT =
150 gallons:
(a) Substitute the value of VT and

write the system of equations in
the matrix form 𝐀𝐱 = 𝐛, where

𝐱 =
[

VA
VB

]
.

(b) Find VA and VB using the matrix
algebra method. Perform all matrix
computations by hand and show all
steps.

(c) Find VA and VB using Cramer’s
rule.

(d) Find VA and VB using substitution.

A B

Figure P7.21 Mixture of two saline solutions.

7-22. A crate weighing W = 500 N is pushed
against an incline (𝜃 = 20∘) with a force
of Fa = 100 N as shown in Fig. P7.22. The
forces Ff and N satisfy the following sys-
tem of equations:

0.9397 Ff + 100 = 0.342N

0.9397 N + 0.342 Ff − 500 = 0

(a) Write the system of equations in the
matrix form 𝐀𝐱 = 𝐛, where

x =
[

Ff
N

]
.

(b) Find Ff and N using the matrix
algebra method. Perform all matrix
computations by hand and show all
steps.

(c) Find Ff and N using Cramer’s rule.

FBD:

Ff

N

Fa

W

W

Fa

x

y

θ

θ

Figure P7.22 A crate being pushed by a force.

7-23. Two chemical tanks are used to supply
a water treatment plant with cleaning
solution. Tank #1 shown in Fig. P7.23
has a high flow valve that allows up to
50 L/min to exit the tank, while tank #2
can only allow up to 30 L/min. If both
tanks are used to output 20,000 total
liters over a combined time of 480 min-
utes, the respective operating times t1
and t2 of each tank satisfy the following
system of equations:

480 − t2 = t1

30t2 = 20000 − 50t1

(a) Rewrite the system of equations
in the matrix form 𝐀 𝐭 = 𝐛, where

𝐭 =
[

t1
t2

]
.

(b) Find t1 and t2 using the substitution
method. Show all steps.

(c) Find t1 and t2 using Cramer’s rule.
Show all steps.

(d) Find t1 and t2 using the matrix
algebra method. Perform all matrix
computations by hand, and show all
steps.

Figure P7.23 A chemical tank for water treatment.

7-24. A desk of mass m = 200 kg rests on
a horizontal plane with a coefficient of
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friction of 𝜇 = 0.3. It is pulled with a
force of F = 1000 N at an angle of 𝜃 =
20∘ as shown in Fig. P7.24. The normal
force Nf and acceleration a in m/s2 sat-
isfy the following system of equations:

939.7 − 0.3 Nf = 200 a

Nf + 342 = 1962

(a) Find Nf and a using the substitution
method.

(b) Write the system of equations in the
matrix form 𝐀𝐱 = 𝐛, where

x =
[

Nf
a

]
.

(c) Find Nf and a using the matrix alge-
bra method.

(d) Find Nf and a using Cramer’s rule.

F 
mg F

μNF

𝜃
𝜃

NF

Figure P7.24 Desk being pulled by a force F.

7-25. The weight of a vehicle is supported
by reaction forces at its front and rear
wheels as shown in Fig. P7.25. The reac-
tion forces R1 and R2 satisfy the follow-
ing system of equations:

R1 + R2 − m g = 0

l1 R1 − l2 R2 − m a k = 0.

(a) Write the system of equations if l1 =
2 m, l2 = 1.5 m, k = 1.5 m, g = 9.81
m/s2, m = 1000 kg, and a = 10 m/s2.

(b) For the system of equations found
in part (a), find R1 and R2 using the
substitution method.

(c) Write the system of equations in the
matrix form 𝐀𝐱 = 𝐛, where

x =
[

R1
R2

]
.

(d) Find R1 and R2 using the matrix
algebra method.

(e) Find R1 and R2 using Cramer’s rule.

W = mg

G
k

ma

F
l2l1

R1 R2

Figure P7.25 A vehicle supported by reaction
forces.

7-26. Repeat problem P7-25, if l1 = 2 m, l2 =
1.5 m, k = 1.5 m, g = 9.81 m/s2, m = 1000
kg, and a = −5 m/s2.

7-27. Repeat problem P7-25, if l1 = 2 m, l2 =
2 m, k = 1.5 m, g = 9.81 m/s2, m = 1200
kg, and a = 9.0 m/s2.

7-28. Repeat problem P7-25, if l1 = 2 m, l2 =
2 m, k = 1.5 m, g = 9.81 m/s2, m = 1200
kg, and a = −4.5 m/s2.

7-29. A driver applies a steady force of FP =
40 N against a gas pedal, as shown in
Fig. P7.29. The free-body diagram of the
driver’s foot is also shown. Based on the
x–y coordinate system shown, the force
of the gastrocnemius muscle Fm and the
weight of the foot WF satisfy the follow-
ing system of equations:

Fm cos 45∘ − WF cos 30∘ = Rx

Fm sin 45∘ − WF sin 30∘ = Ry − FP.
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Gas pedal

Driver

Fm Rx

y

x

Fp

WF

Ry60°75°

Figure P7.29 A driver applying a steady force
against the gas pedal.

(a) Knowing that Rx = 70∕
√

2 N and
Ry = 105 N, rewrite the system of
equations in terms of Fm and WF .

(b) Find Fm and WF using the substitu-
tion method.

(c) Write the system of equations
obtained in part (a) in the matrix

form 𝐀𝐱 = 𝐛, where 𝐱 =
[

Fm
WF

]
.

(d) Find Fm and WF using the matrix
algebra method. Perform all com-
putations by hand and show all
steps.

(e) Find Fm and WF using Cramer’s
rule.

7-30. An environmental engineer wishes to
blend a single mixture of insecticide
spray solution of volume V = 500 L with
a specified concentration C = 0.2 from
two spray solutions of concentration
c1 = 0.15 and c2 = 0.25. The required
volumes of the two spray solutions
v1 and v2 can be determined from a

system of equations describing condi-
tions for volume and concentration,
respectively, as

v1 + v2 = V

c1 v1 + c2 v2 = C V.

(a) Knowing that V = 500 L, c1 = 0.15,
c2 = 0.25, and C = 0.2, rewrite the
system of equations in terms of v1
and v2.

(b) Find v1 and v2 using the substitution
method.

(c) Write the system of equations
obtained in part (a) in the matrix

form 𝐀𝐱 = 𝐛, where 𝐱 =
[

v1
v2

]
.

(d) Find v1 and v2 using the matrix alge-
bra method. Perform all computa-
tions by hand and show all steps.

(e) Find v1 and v2 using Cramer’s rule.

7-31. A pulse oximeter shown in Fig. P7.31
measures blood saturation (measured in
mol) by comparing the concentrations
of oxygenated hemoglobin (HbO2) and
deoxygenated hemoglobin (Hb), repre-
sented by C1 and C2, respectively. These
values can be calculated by measuring
the absorption coefficient of skin at two
different light wavelengths. If the extinc-
tion coefficients are given as 𝜖Hb(𝜆1) =
3327, 𝜖HbO2

(𝜆1) = 320, 𝜖Hb(𝜆2) = 762,
and 𝜖HbO2

(𝜆2) = 816, all measured in
cm−1/mol, then the concentrations sat-
isfy the following system of equations:

𝜇a(𝜆1) = 320C1 + 3327C2

𝜇a(𝜆2) = 816C1 + 762C2

where 𝜇a(𝜆1) = 1.8 cm−1 and 𝜇a(𝜆2) =
3.1 cm−1.
(a) Determine C1 and C2 using the sub-

stitution method.
(b) Write the system of equations in

the matrix form 𝐀𝐱 = 𝐛, where

𝐱 =
[

C1
C2

]
.

(c) Determine C1 and C2 using the
matrix algebra method. Show all
work.



Trim Size: 8in x 10in Rattan2e c07.tex V1 - 03/17/2021 3:07pm Page 219�

� �

�

Problems 219

(d) Determine C1 and C2 using
Cramer’s rule.

Figure P7.31 Pulse oximeter.

7-32. Consider the two-loop circuit shown in
Fig. P7.32. The currents I1 and I2 (in
amps) satisfy the following system of
equations:

(0.1 s + 1) I1 − I2 =
100

s

−1 I1 +
(

1 + 2
s

)
I2 = 0

0.1 s Ω

1 ΩI1 I2

+
−

2
s− Ω

100
s⎯⎯ V

Figure P7.32 Two-loop circuit for problem P7-32.

(a) Find I1 and I2 using the substitution
method.

(b) Write the system of equations in the

matrix form𝐀𝐈 = 𝐛, where 𝐈 =
[

I1
I2

]
.

(c) Find I1 and I2 using the matrix alge-
bra method.

(d) Find I1 and I2 using Cramer’s rule.

7-33. In electrical circuits, resistance and cur-
rent are inversely proportional. After
plotting measured values of current
I as a function of 1∕R, a linear least
squares curve fit can be obtained from
the measured data points, as shown

in Fig. P7.33. The resulting slope m
(measured in volts) and y-intercept b
(measured in amps) satisfy the follow-
ing system of equations:

0.017m + 0.257b − 2 = 0

0.257m + 6b − 31 = 0

(a) Write the system of equations in
the matrix form 𝐀𝐱 = 𝐛, where

𝐱 =
[

m
b

]
.

(b) Determine m and b using the matrix
algebra method. Perform all matrix
computations by hand and show all
steps.

(c) Determine m and b using Cramer’s
rule. Perform all necessary compu-
tations and show all steps.

(d) Determine m and b using the sub-
stitution method. Perform all nec-
essary computations and show all
steps.

1/R (1/Ω)

I 
(a

m
ps

)

12

0
0 0.10.080.060.040.02

2

4

6

8

10

Figure P7.33 Linear least squares curve fit of the
current–resistance relationship.

7-34. Consider the two-node circuit shown
in Fig. P7.34. The voltages V1 and V2
(in volts) satisfy the following system of
equations:(

5
s
+ 0.1

)
V1 − 0.1 V2 =

0.1
s(

0.1 + 5
s

)
V2 − 0.1 V1 =

0.2
s
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(a) Write the system of equations in
the matrix form 𝐀𝐕 = 𝐛, where

𝐕 =
[

V1
V2

]
.

(b) Find V1 and V2 using the matrix
algebra method.

(c) Find V1 and V2 using Cramer’s rule.

V2V1

↑ ↑

10 Ω

0.2 s Ω 5
s⎯ Ω

0.1
s⎯ A 0.2

s⎯ A

Figure P7.34 Two-loop circuit for problem P7-34.

7-35. A mechanical engineer needs to com-
bine two coolants of differing concen-
trations as shown in Fig. P7.35. Coolant
A is a 5% concentration and Coolant
B is a 12% concentration. The resulting
mixture must have a concentration of
10%. If the total volume of the mixture
is VT , the required volumes of the two
coolants VA and VB satisfy the following
system of equations:

VA + VB = VT

0.05VA + 0.12VB − 0.1VT = 0

A B

Figure P7.35 Coolants of varying concentration.

Suppose the total volume of the mixture
is VT = 5 L.
(a) Substitute the value of VT and

write the system of equations in
the matrix form 𝐀𝐱 = 𝐛, where

𝐱 =
[

VA
VB

]
.

(b) Find VA and VB using the matrix
algebra method. Perform all matrix
computations by hand and show all
steps.

(c) Find VA and VB using Cramer’s
rule. Perform all necessary compu-
tations and show all steps.

(d) Find VA and VB using substitution.
Perform all necessary computations
and show all steps.

7-36. Figure P7.36 shows a system with
two-mass elements and two springs. The
mass m1 is pulled with a force f = 100 N,
and the displacements X1(s) and X2(s)
of the two masses in the s-domain satisfy
the following system of equations:(

2 s2 + 50
)

X1(s) − 50 X2(s) =
100

s

−50 X1(s) +
(
2 s2 + 100

)
X2(s) = 0

X1X2

f = 100 N

f = 100 N

X1

50 (X1 −  X2)

X2

50 X2

m2 = 2 kg m1 = 2 kg

m2 = 2 kg m1 = 2 kg

k1 = 50 N/mk2 = 50 N/m

Figure P7.36 Mechanical system for
problem P7-36.

(a) Write the system of equations in
the matrix form 𝐀𝐗 = 𝐛, where

𝐗 =
[

X1(s)
X2(s)

]
.

(b) Find the expressions of X1(s) and
X2(s) using the matrix algebra
method.

(c) Find the expressions of X1(s) and
X2(s) using Cramer’s rule.

7-37. A co-op student at a composite
materials manufacturing company is
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attempting to determine how much
of two different composite materials
to make from the available quantities
of carbon fiber and resin. The student
knows that if 1 L of Composite A
requires 0.14 lb of carbon fiber and 1.1 lb
of polymer resin while 1 L of Compos-
ite B requires 3.1 lb of carbon fiber and
1.8 lb of polymer resin. If the available
quantities of carbon fiber and resin are
16 lb and 11 lb, respectively, the amount
of each composite to manufacture satis-
fies the system of equations:

0.14 xA + 3.1 xB = 16

1.1 xA + 1.8 xB = 11

where xA and xB are the volumes of
Composite A and Composite B (in
liters), respectively.
(a) Find xA and xB using the substitu-

tion method.
(b) Write the system of equations in

the matrix form 𝐀𝐱 = 𝐛, where

𝐱 =
[

xA
xB

]
.

(c) Find xA and xB using the matrix
algebra method. Perform compu-
tation by hand and show all steps.

(d) Find xA and xB using Cramer’s rule.

7-38. Repeat parts (a)–(d) of problem P7-37
if 1 L of Composite A requires 0.16
lb of carbon fiber and 1.75 lb of poly-
mer resin while 1 L of Composite B
requires 2.5 lb of carbon fiber and
0.78 lb of polymer resin. If the avail-
able quantities of carbon fiber and
resin are 17 lb and 12 lb, respec-
tively, the amount of each composite
to manufacture satisfies the system of
equations

0.16 xA + 2.5 xB = 17

1.75 xA + 0.78 xB = 12

7-39. A structural engineer is performing a
finite element analysis on an aluminum
truss support structure subjected to a
load as shown in Fig. P7.39. By the finite

element method, the displacements in
the horizontal and vertical directions
at the node where the load is applied
can be determined from the system of
equations:

0.4500 u + 0.5831 v = −0.2224

0.5831 u + 1.224 v = 0

where u and v are the displacements in
the horizontal and vertical directions,
measured in mm, respectively.
(a) Find u and v using the substitution

method.
(b) Write the system of equations in the

matrix form𝐀𝐱 = 𝐛, where 𝐱 =
[

u
v

]
.

(c) Find u and v using the matrix alge-
bra method. Perform computation
by hand and show all steps.

(d) Find u and v using Cramer’s rule.

609.6 mm

F = 22.24 kN

304.8 mm   914.4 mm

Figure P7.39 Finite element idealization of truss
structure subject to loading.

7-40. A structural engineer is designing a
crane that is to be used to unload barges
at a dock. The finite element idealiza-
tion of the crane structure picking up a
2000 lb load is shown in Fig. P7.40. The
displacement in the horizontal and ver-
tical directions at the end of the crane
can be determined from the system of
equations:

2.47 u + 1.08 v = 0

1.08 u + 0.49 v = −0.02
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where u and v are the displacements in
the horizontal and vertical directions,
measured in inches, respectively.
(a) Find u and v using the substitution

method.
(b) Write the system of equations in the

matrix form𝐀𝐱 = 𝐛, where 𝐱 =
[

u
v

]
.

(c) Find u and v using the matrix alge-
bra method. Perform computation
by hand and show all steps.

(d) Find u and v using Cramer’s rule.

F = 2000 lb

15 ft 40 ft

20 ft

Figure P7.40 Finite element idealization of crane
structure subject to loading.
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Derivatives in
Engineering

CHAPTER
8

8.1 INTRODUCTION

This chapter will discuss what a derivative is and why it is important in engineering.
The concepts of maxima and minima along with the applications of derivatives to
solve engineering problems in dynamics, electric circuits, and mechanics of materials
are emphasized.

8.1.1 What Is a Derivative?

To explain what a derivative is, an engineering professor asks a student to drop a ball
(shown in Fig. 8.1) from a height of y = 1.0 m to find the time when it impacts the
ground. Using a high-resolution stopwatch, the student measures the time at impact
as t = 0.452 s. The professor then poses the following questions:

(a) What is the average velocity of the ball?

(b) What is the speed of the ball at impact?

(c) How fast is the ball accelerating?

1 m y(t)

y = 0t = 0.452 s

t = 0 s

Figure 8.1 A ball dropped from a height of 1 m.

Using the given information, the student provides the following answers:

(a) Average Velocity, v: The average velocity is the total distance traveled per unit
time. For example

v = Total distance
Total time

=
Δ y
Δ t

=
y2 − y1

t2 − t1

= − 0 − 1.0
0.452 − 0

223
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= − 1.0
0.452

= −2.21 m/s.

Note that the negative sign means the ball is moving in the negative y-direction.

(b) Speed at Impact: The student finds that there is not enough information to
find the speed of ball when it impacts the ground. Using an ultrasonic motion
detector in the laboratory, the student repeats the experiment and collects the
data given in Table 8.1.

TABLE 8.1 Additional data collected from the dropped ball.

t, s 0 0.1 0.2 0.3 0.4 0.452

y(t), m 1.0 0.951 0.804 0.559 0.215 0

The student then calculates the average velocity v = Δy∕Δt in each interval. For

example, in the interval t = [0, 0.1], v = 0.951 − 1.0
0.1 − 0

= −0.490 m/s. The average

velocity in the remaining intervals is given in Table 8.2.

TABLE 8.2 Average velocity of the ball in different intervals.

Interval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.452]

v , m/s −0.490 −1.47 −2.45 −3.44 −4.13

The student proposes an approximate answer of−4.13 m/s as the speed of impact
with ground, but claims that he/she would need an infinite (∞) number of data
points to get it exactly right, for example

v(t = 0.452) = lim t → 0.452
y(0.452) − y(t)

0.452 − t
.

The professor suggests that this looks like the definition of a derivative,
for example

v(t) = lim Δ t → 0
y(t + Δ t) − y(t)

Δ t
=

dy
dt

where Δ t = 0.452 − t.
The derivatives of some common functions in engineering are given below.

Note that 𝜔, a, n, c, c1, and c2 are constants and not functions of t.
The professor then suggests a quadratic curve fit of the measured data,

which gives
y(t) = 1.0 − 4.905 t2.
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TABLE 8.3 Some common derivatives used in engineering.

Function, f (t) Derivative,
df (t)

dt

sin(𝜔 t) 𝜔 cos(𝜔 t)

cos(𝜔 t) −𝜔 sin(𝜔 t)

ea t a ea t

tn n tn−1

c f (t) c
df (t)

dt

c 0

c1 f1(t) + c2 f2(t) c1
df1(t)

dt
+ c2

df2(t)
dt

f (t) . g(t) f (t)
dg(t)

dt
+ g(t)

df (t)
dt

f (g(t))
df
dg

×
dg(t)

dt

The velocity at any time is thus calculated by taking the derivative as

v(t) =
dy
dt

= d
dt

(
1.0 − 4.905 t2)

= d
dt
(1.0) − 4.905 d

dt

(
t2)

= 0 − 4.905(2 t)

= −9.81 t m/s.

(c) The student is now asked to find the acceleration without taking any more data.
The acceleration is the rate of change of velocity, for example

a(t) = lim Δ t → 0
Δ v(t)
Δ t

= dv(t)
dt

= d
dt

dy(t)
dt

=
d2 y(t)

dt2
.
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Thus, if v(t) = −9.81 t, then
a(t) = d

dt
(−9.81 t)

= −9.81 m/s2.

Hence, the acceleration due to gravity is constant and is equal to −9.81 m/s2.

8.2 MAXIMA AND MINIMA

Suppose now that the ball is thrown upward with an initial velocity vo = 4.43 m/s2 as
shown in Fig. 8.2.

(a) How long does it take for the ball to reach its maximum height?

(b) What is the velocity at y = ymax?

(c) What is the maximum height ymax achieved by the ball?

v(0) = 4.43 m/s

y(t) = 4.43 t − 4.905 t2 m

Figure 8.2 A ball thrown upward.

The professor suggests that the height of the ball is governed by the quadratic
equation

y(t) = 4.43 t − 4.905 t2 m, (8.1)

and plotted as shown in Fig. 8.3.

y(t), m

ymax

tmax0
0 t, s

Figure 8.3 The height of the ball thrown upward.
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Based on the definition of the derivative, the velocity v(t) at any time t is the
slope of the line tangent to y(t) at that instant, as shown in Fig. 8.4. Therefore, at the
time when y = ymax, the slope of the tangent line is zero (Fig. 8.5).

y (t), m

t, s

Δy

t

Δt

dy
dt
⎯ = lim

Δt → 0

t + Δt0
0

Δy
Δt
⎯

Figure 8.4 The derivative as the slope of the tangent line.

y(t), m

t, s

ymax

tmax0
0

dy
dt
⎯ = v(t) = 0

Figure 8.5 The slope of the tangent line at maximum height.

For the problem at hand, the velocity is given by

v(t) =
dy(t)

dt

= d
dt

(4.43 t − 4.905 t2)

= 4.43 − 9.81 t m/s. (8.2)
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Given equation (8.2), the student answers the professor’s questions as follows:

(a) How long does it takes to reach maximum height? At the time of maximum

height t = tmax, v(t) =
dy(t)

dt
= 0. Hence, setting v(t) in equation (8.2) to zero gives

4.43 − 9.81tmax = 0

tmax =
4.43
9.81

or
tmax = 0.4515 s.

Therefore, it takes 0.4515 s for the ball to reach the maximum height.

(b) What is the velocity at y = ymax? Since the slope of the height at t = tmax is zero,
the velocity at y = ymax is zero. The plot of the velocity, v(t) = 4.43 − 9.81 t for
times t = 0 to t = 0.903 s, is shown in Fig. 8.6. It can be seen that the velocity
is maximum at t = 0 s (initial velocity = 4.43 m/s), reduces to 0 at t = 0.4515 s
(t = tmax), and reaches a minimum value (−4.43 m/s) at t = 0.903 s.

v(t), m/s

4.43

0

−4.43

0 tmax = 0.4515 0.903
t, s

Figure 8.6 The velocity profile of the ball thrown upward.

(c) The maximum height: The maximum height can now be obtained by substituting
t = tmax = 0.4515 s in equation (8.1) for y(t)

ymax = y(tmax)

= 4.43 (0.4515) − 4.905 (0.4515)2

= 1.0 m.
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It should be noted that the derivative of a function is zero both at the points where
the value of the function is maximum (maxima) and where the value of the func-
tion is minimum (minima). So if the derivative is zero at both maxima and minima,
how can one tell whether the value of the function found earlier is a maximum or a
minimum? Consider the function shown in Fig. 8.7, which has local maximum and
minimum values.

t

y(t)

0
0

dy(t)
dt

⎯⎯ > 0

dy(t)
dt

⎯⎯ > 0

dy(t)
dt

⎯⎯ < 0

dy(t)
dt

⎯⎯ < 0

dy(t)
dt

⎯⎯ = 0, ⎯⎯⎯  < 0 (maxima)
d2y(t)

dt2

dy(t)
dt

⎯⎯ = 0, ⎯⎯⎯  > 0 (minima)
d2y(t)

dt2

Figure 8.7 Plot of a function with local maximum and minimum values.

As discussed earlier, the derivative of a function at a point is the slope of the tangent
line at that point. At its maximum value, the derivative (slope) of the function shown
in Fig. 8.7 changes from positive to negative. At its minimum value, the derivative
(slope) of the function changes from negative to positive. In other words, the rate
of change of the derivative (or the second derivative of the function) is negative
at maxima and positive at minima. Therefore, to test for maxima and minima, the
following rules apply:

At a Local Maximum:

dy(t)
dt

= 0,
d2y(t)

dt2
< 0

At a Local Minimum:

dy(t)
dt

= 0,
d2y(t)

dt2
> 0

To test whether the point where the slope (first derivative) of the trajectory of the
ball thrown upward is zero is a maximum or a minimum, the student obtains the
second derivative of the height as

d2y(t)
dt2

= d
dt

(4.43 − 9.81 t) = −9.81 < 0.
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Therefore, the point where the slope of the trajectory of the ball is zero is a maximum
and thus the maximum height is 1.0 m.

In general, the procedure of finding the local maxima and minima of any func-
tion f (t) is as follows:

(a) Find the derivative of the function with respect to t; in other words, find

f ′(t) = df (t)
dt

.

(b) Find the solution of the equation f ′(t) = 0; in other words; find the values of
t where the function has a local maximum or a local minimum.

(c) To find which values of t gives the local maximum and which values of t gives the
local minimum, determine the second derivative

(
f ′′(t) = d2f (t)

dt2

)
of the function.

(d) Evaluate the second derivative at the values of t found in step (b). If the second
derivative is negative

(
d2f (t)

dt2
< 0

)
, the function has a local maximum for those

values of t; however, if the second derivative is positive, the function has a local
minimum for these values.

(e) Evaluate the function, f (t), at the values of t found in step (b) to find the maxi-
mum and minimum values.

8.3 APPLICATIONS OF DERIVATIVES IN DYNAMICS

This section demonstrates the application of derivatives in determining the velocity
and acceleration of an object if the position of the object is given. This section also
demonstrates the application of derivatives in sketching plots of position, velocity,
and acceleration.

8.3.1 Position, Velocity, and Acceleration

Suppose the position x(t) of an object is defined by a linear function with parabolic
blends, as shown in Fig. 8.8. This motion is similar to a vehicle starting from rest and
accelerating with a maximum positive acceleration (parabolic position) to reach a
constant speed, cruising at that constant speed (linear position), and then coming to
stop with maximum braking (maximum negative acceleration, parabolic position).

As discussed previously, velocity v(t) is the instantaneous rate of change of the
position (i.e., the derivative of the position) and is given by

v(t) = limΔ t → 0
Δ x(t)
Δ t

or
v(t) = d x(t)

d t
.

Therefore, the velocity v(t) is the slope of the position x(t) as shown in Fig. 8.9. It
can be seen from Fig. 8.9 that the object is starting from rest, moves at a linear
velocity with positive slope until it reaches a constant velocity, cruises at that con-
stant velocity, and comes to rest again after moving at a linear velocity with a nega-
tive slope.
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x(t), m

Parabolic blend

Linear function

t, s

Figure 8.8 Position of an object as a linear function with parabolic blends.

0

Constant velocity

Linear
 velo

cit
y Linear velocity

t, s

v(t), m/s

Figure 8.9 Velocity of the object moving as a linear function with parabolic blends.

The acceleration a(t) is the instantaneous rate of change of the velocity (i.e., the
derivative of the velocity):

a(t) = d v(t)
d t

or

a(t) = d2 x(t)
d t2

.

Therefore, the acceleration a(t) is the slope of the velocity v(t), which is shown in
Fig. 8.10. It can be seen from Fig. 8.10 that the object starts with maximum positive
acceleration until it reaches a constant velocity, cruises with zero acceleration, and
then comes to rest with maximum braking (constant negative acceleration).

The following examples will provide some practice in taking basic derivatives
using the formulas in Table 8.3.
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0 
t, s

a(t), m/s2

Figure 8.10 Acceleration of the object moving as a linear function with parabolic blends.

Example
8-1

The motion of the particle shown in Fig. 8.11 is defined by its position x(t). Deter-
mine the position, velocity, and acceleration at t = 0.5 s if

(a) x(t) = sin (2𝜋 t) m

(b) x(t) = 3 t3 − 4 t2 + 2 t + 6 m

(c) x(t) = 20 cos(3𝜋 t) − 5 t2 m

v(t)

x(t)

Figure 8.11 A particle moving in the horizontal direction.

Solution (a) The velocity and acceleration of the particle can be obtained by finding the
first and second derivatives of x(t), respectively. Since

x(t) = sin 2𝜋 t m, (8.3)

the velocity is
v(t) = dx(t)

dt

= d
dt

(sin 2𝜋 t)

or
v(t) = 2𝜋 cos 2𝜋 t m/s. (8.4)
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The acceleration of the particle can now be found by differentiating the veloc-
ity as

a(t) = dv(t)
dt

= d
dt

(2𝜋 cos 2𝜋 t)

= (2𝜋) d
dt

(cos 2𝜋 t)

= (2𝜋) (−2𝜋 sin 2𝜋 t)

or
a(t) = −4𝜋2 sin 2𝜋 t m/s2. (8.5)

The position, velocity, and acceleration of the particle at t = 0.5 s can now be
calculated by substituting t = 0.5 in equations (8.3), (8.4), and (8.5) as

x(0.5) = sin ( 2𝜋 (0.5) ) = sin𝜋 = 0 m

v(0.5) = 2𝜋 cos ( 2𝜋 (0.5) ) = 2𝜋 cos𝜋 = −2𝜋 m/s

a(0.5) = −4𝜋2 sin ( 2𝜋 (0.5) ) = −4𝜋2 sin𝜋 = 0 m/s2.

(b) The position of the particle is given by

x(t) = 3 t3 − 4 t2 + 2 t + 6 m. (8.6)

The velocity of the particle can be calculated by differentiating equation
(8.6) as

v(t) = dx(t)
dt

= d
dt

(3 t3 − 4 t2 + 2 t + 6)

= 3 d
dt

(t3) − 4 d
dt

(t2) + 2 d
dt

(t) + 6 d
dt

(1)

= 3 (3 t2) − 4 (2t) + 2 (1) + 6 (0)

or
v(t) = 9 t2 − 8 t + 2 m/s. (8.7)

The acceleration of the particle can now be obtained by differentiating
equation (8.7) as

a(t) = dv(t)
dt

= d
dt

(9 t2 − 8 t + 2)
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= 9 d
dt

(t2) − 8 d
dt

(t) + 2 d
dt

(1)

= 9 (2 t) − 8 (1) + 2 (0)

or
a(t) = 18 t − 8 m/s2. (8.8)

The position, velocity, and acceleration of the particle at t = 0.5 s can now be
calculated by substituting t = 0.5 in equations (8.6), (8.7), and (8.8) as

x(0.5) = 3 (0.5)3 − 4 (0.5)2 + 2 (0.5) + 6 = 6.375 m

v(0.5) = 9 (0.5)2 − 8 (0.5) + 2 = 0.25 m/s

a(0.5) = 18 (0.5) − 8 = 1.0 m/s2.

(c) The position of the particle is given by

x(t) = 20 cos(3𝜋 t) − 5 t2 m. (8.9)

The velocity of the particle can be calculated by differentiating equation

(8.9) as

v(t) = dx(t)
dt

= d
dt

(20 cos(3𝜋 t) − 5 t2)

= 20 d
dt

(cos ( 3𝜋 t) ) − 5 d
dt

(t2)

= 20 (−3𝜋 sin ( 3𝜋 t) ) − 5 (2 t)

or
v(t) = −60𝜋 sin(3𝜋 t) − 10 t m/s. (8.10)

The acceleration of the particle can now be obtained by differentiating
equation (8.10) as

a(t) = dv(t)
dt

= d
dt

( −60𝜋 sin(3𝜋 t) − 10 t )

= −60𝜋 d
dt

( sin(3𝜋 t) ) − 10 d
dt

(t)

= −60𝜋 ( 3𝜋 cos(3𝜋 t) ) − 10 (1)

or
a(t) = −180𝜋2 cos(3𝜋 t) − 10 m/s2. (8.11)
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The position, velocity, and acceleration of the particle at t = 0.5 s can now be
calculated by substituting t = 0.5 in equations (8.9), (8.10), and (8.11) as

x(0.5) = 20 cos ( 3𝜋 (0.5) ) − 5 (0.5)2

= 20 cos
(3𝜋

2

)
− 5 (0.25)

= 0 − 1.25

= −1.25 m

v(0.5) = −60𝜋 sin ( 3𝜋 (0.5) ) − 10 (0.5)

= −60𝜋 sin
(3𝜋

2

)
− 5

= 60𝜋 − 5

= 183.5 m/s

a(0.5) = −180𝜋2 cos ( 3𝜋 (0.5) ) − 10

= −180𝜋2 cos
(3𝜋

2

)
− 10

= −180𝜋2 (0) − 10

= −10 m/s2.

The following example will illustrate how derivatives can be used to help sketch
functions.

Example
8-2

The motion of a particle shown in Fig. 8.12 is defined by its position y(t) as

y(t) = 1
3

t3 − 5 t2 + 21 t + 10 m. (8.12)

(a) Determine the value of the position and acceleration when the velocity is zero.

(b) Use the results of part (a) to sketch the graph of the position y(t) for 0 ≤ t ≤ 9 s.

y(t) = t3 − 5 t2 + 21 t + 10 m
3
1

v(t)

−

Figure 8.12 The position of a particle in the vertical plane.
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Solution (a) The velocity of the particle can be calculated by differentiating equation
(8.12) as

v(t) =
dy(t)

dt

= d
dt

(1
3

t3 − 5 t2 + 21 t + 10)

= 1
3

d
dt

(t3) − 5 d
dt

(t2) + 21 d
dt

(t) + 10 d
dt

(1)

= 1
3
(3 t2) − 5 (2t) + 21 (1) + 10 (0)

or
v(t) = t2 − 10 t + 21 m/s. (8.13)

The time when the velocity is zero can be obtained by setting equation (8.13)
equal to zero as

t2 − 10 t + 21 = 0. (8.14)

The quadratic equation (8.14) can be solved using one of the methods dis-
cussed in Chapter 2. For example, factoring equation (8.14) gives

(t − 3) (t − 7) = 0. (8.15)

The two solutions of equation (8.15) are given as

t − 3 = 0 ⇒ t = 3 s

t − 7 = 0 ⇒ t = 7 s.

Note that quadratic equation (8.14) can also be solved using the quadratic for-
mula, which gives

t =
10 ±

√
102 − 4(1)(21)
2(1)

= 10 ±
√

16
2

= 10 ± 4
2

= 10 − 4
2

,
10 + 4

2
or

t = 3, 7 s.
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Therefore, the velocity is zero at both t = 3 s and t = 7 s. To evaluate the accel-
eration at these times, an expression for the acceleration is needed. The accel-
eration of the particle can be obtained by differentiating the velocity of the
particle (equation (8.13)) as

a(t) = dv(t)
dt

= d
dt

(t2 − 10 t + 21)

= d
dt

(t2) − 10 d
dt

(t) + 21 d
dt

(1)

or
a(t) = 2 t − 10 m/s2. (8.16)

The position and acceleration at time t = 3 s can be found by substituting t = 3
in equations (8.12) and (8.16) as

y(3) = 1
3
(3)3 − 5 (3)2 + 21 (3) + 10 = 37 m

a(3) = 2(3) − 10 = −4 m/s2.

Similarly, the position and acceleration at t = 7 s can be found by substituting
t = 7 in equations (8.12) and (8.16) as

y(7) = 1
3
(7)3 − 5 (7)2 + 21 (7) + 10 = 26.3 m

a(7) = 2(7) − 10 = 4 m/s2.

(b) The results of part (a) can be used to sketch the graph of the position y(t). It
was shown in part (a) that the velocity of the particle is zero at t = 3 s and
t = 7 s. Since the velocity is the derivative of the position, the derivative of the
position at t = 3 s and t = 7 s is zero (i.e., the slope is zero). What this means
is that the position y(t) has a local minimum or maximum at t = 3 s and t = 7
s. To check whether y(t) has a local minimum or maximum, the second deriva-
tive (acceleration) test is applied. Since the acceleration at t = 3 s is negative
(a(3) = −4 m/s2), the position y(3) = 37 m is a local maximum. Since the accel-
eration at t = 7 s is positive (a(7) = 4 m/s2), the position y(7) = 26.3 m is a local
minimum. This information, along with the positions of the particle at t = 0
(y(0) = 10 m) and t = 9 (y(9) = 37 m), can be used to sketch the position y(t),
as shown in Fig. 8.13.
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y(t), m

Local maxima 
37

26.3

Local minima

0
0 3 7

t, s

Figure 8.13 The approximate sketch of the position y(t) of example 8-2.

Derivatives are frequently used in engineering to help sketch functions for which no
equation is given. Such is the case in the following example, which begins with a plot
of the acceleration a(t).

Example
8-3

The acceleration of a vehicle is measured as shown in Fig. 8.14. Knowing that the
particle starts from rest at position x = 0 and travels a total of 16 m, sketch plots of
the position x(t) and velocity v(t).

x(t)

0 2 4 6

2

−2

t, s

a(t), m/s2

Figure 8.14 Acceleration of a vehicle for example 8-3.
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Solution (a) Plot of Velocity: The velocity of the vehicle can be obtained from the acceler-
ation profile given in Fig. 8.14. Knowing that v(0) = 0 m/s and a(t) = dv(t)

dt
(i.e.,

a(t) is the slope of v(t)), each interval can be analyzed as follows:

0 ≤ t ≤ 2 s ∶ dv(t)
dt

= a(t) = 2 ⇒ v(t) is a line with slope = 2.

2 < t ≤ 4 s ∶ dv(t)
dt

= a(t) = 0 ⇒ v(t) is constant.

4 < t ≤ 6 s ∶ dv(t)
dt

= a(t) = −2 ⇒ v(t) is a line with slope = −2.

The graph of the velocity profile is shown in Fig. 8.15.

0

2
1

−2
1

4

2 4 6

v(t), m/s

t, s

Figure 8.15 The velocity profile for example 8-3.

(b) Plot of Position: Now, use the velocity, v(t), to construct the position x(t).
Knowing that x(0) = 0 m and v(t) = dx(t)

dt
(i.e., v(t) is the slope of x(t)), each

interval can be analyzed as follows:

(i) 0 ≤ t ≤ 2 s: v(t) is a straight line with a slope of 2 starting from origin
(v(0) = 0); therefore, v(t) = dx(t)

dt
= 2 t m/s. From Table 8.3, the position of

the vehicle must be a quadratic equation of the form

x(t) = t2 + C. (8.17)

This can be checked by taking the derivative, for example, v(t) = dx(t)
dt

=
d
dt
(t2 + C) = 2 t m/s. Therefore, the equation of position given by (8.17) is

correct. The value of C is obtained by evaluating equation (8.17) at t = 0
and substituting the value of x(0) = 0 as

x(0) = 0 + C

0 = 0 + C

C = 0.

Therefore, for 0 ≤ t ≤ 2 s, x(t) = t2 is a quadratic function with a positive
slope (concave up) and x(2) = 4 m, as shown in Fig. 8.16.

(ii) 2 < t ≤ 4 s: v(t) has a constant value of 4 m/s, for example, v(t) = dx(t)
dt

=
4. Therefore, x(t) is a straight line with a slope of 4 m/s starting with a value
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of 4 m at t = 2 s as shown in Fig. 8.16. Since the slope is 4 m/s, the position
increases by 4 m every second. So during the 2 s between t = 2 and t = 4,
its position increases by 8 m. And since the position at time t = 2 s was
4 m, its position at time t = 4 s will be 4 m + 8 m = 12 m. The equation of
position for 2 < t ≤ 4 s can be written as

x(t) = 4 + 4 (t − 2) = 4 t − 4 m.

(iii) 4 < t ≤ 6 s: v(t) is a straight line with a slope of −2 m/s, therefore, x(t)
is a quadratic function with decreasing slope (concave down) starting at
x(4) = 12 m and ending at x(6) = 16 m with zero slope. The resulting graph
of the position is shown in Fig. 8.16.

x(t), m

16

12 

4

0
0 2 4 6

t, s

Figure 8.16 The position of the particle for example 8-3.

Example
8-4

The position of the cart moving on frictionless rollers shown in Fig. 8.17 is given by

x(t) = cos(𝜔 t) m,

where 𝜔 = 2𝜋.

(a) Find the velocity of the cart.

(b) Show that the acceleration of the cart is given by a(t) = −𝜔2cos(𝜔 t)m/s2, where
𝜔 = 2𝜋.
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x(t)

k

Frictionless rollers

m

Figure 8.17 A cart moving on frictionless rollers.

Solution (a) The velocity v(t) of the cart is obtained by differentiating the position x(t) as

v(t) = dx(t)
dt

= d
dt

( cos(2𝜋 t) )

= −2𝜋 sin(2𝜋 t) m/s.

(b) The acceleration a(t) of the cart is obtained by differentiating the position
v(t) as

a(t) = dv(t)
dt

= d
dt

( −2𝜋 sin(2𝜋 t) )

= −2𝜋 d
dt

( sin(2𝜋 t) )

= −(2𝜋)2 sin(2𝜋 t) m/s2
.

Note that the second derivative of sin(𝜔 t) or cos(𝜔 t) is the same function scaled
by −𝜔2, for example

d2

dt2
sin(𝜔 t) = −𝜔2 sin(𝜔 t)

d2

dt2
cos(𝜔 t) = −𝜔2 cos(𝜔 t)

Example
8-5

An object of mass m moving at velocity v0 impacts a cantilever beam (of length l
and flexural rigidity EI) as shown in Fig. 8.18. The resulting displacement of the
beam is given by

y(t) =
v0

𝜔
sin𝜔 t (8.18)

where 𝜔 =
√

3 E I
m l3

is the angular frequency of displacement. Find the following:

(a) The maximum displacement ymax.

(b) The values of the displacement and acceleration when the velocity is zero.
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y(t)

l

m

v0, m/s

Figure 8.18 A mass impacting a cantilever beam.

Solution (a) The maximum displacement can be found by first finding the time tmax when
the displacement is maximum. This is done by equating the derivative of the

displacement (or the velocity) to zero, (i.e., v(t) =
dy(t)

dt
= 0). Since v0 and 𝜔

are constants, the derivative is given by

v(t) =
dy(t)

dt

=
v0

𝜔

d
dt

(sin𝜔 t)

=
v0

𝜔
(𝜔 cos𝜔 t)

or
v(t) = v0 cos 𝜔 t m/s. (8.19)

Equating equation (8.19) to zero gives

v0 cos 𝜔 tmax = 0 ⇒ cos𝜔 tmax = 0. (8.20)

The solutions of equation (8.20) are

𝜔 tmax = 𝜋

2
,

3𝜋
2

, . . .,

or
tmax = 𝜋

2𝜔
,

3𝜋
2𝜔

, . . .. (8.21)

Therefore, the displacement of the beam has local maxima or minima at the
values of t given by equation (8.21). To find the time when the displacement is
maximum, the second derivative rule is applied. The second derivative of the
displacement is obtained by differentiating equation (8.19) as

d2y(t)
dt2

= vo
d
dt

(cos𝜔 t)

= v0 (−𝜔 sin𝜔 t)
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or
d2y(t)

dt2
= −v0 𝜔 sin 𝜔 t m/s2. (8.22)

The value of the second derivative of the displacement at 𝜋

2𝜔
is given by

d2y
(

𝜋

2𝜔

)
dt2

= −v0 𝜔 sin
(
𝜋

2

)
< 0.

Similarly, the value of the second derivative of the displacement at 3𝜋
2𝜔

is
given by

d2y
( 3𝜋

2𝜔

)
dt2

= −v0 𝜔 sin
(3𝜋

2

)
> 0.

Therefore, the displacement is maximum at time

tmax = 𝜋

2𝜔
. (8.23)

The maximum displacement can be found by substituting tmax = 𝜋

2𝜔
into

equation (8.18) as

ymax =
v0

𝜔
sin(𝜔 tmax)

=
v0

𝜔
sin 𝜋

2

=
v0

𝜔

=
v0√
3 E I
m l3

or

ymax = v0

√
m l3

3 E I
.

Note: The local maxima or minima of trigonometric functions can also be
obtained without derivatives. The plot of the beam displacement given by
equation (8.18) is shown in Fig. 8.19.

It can be seen from Fig. 8.19 that the maximum value of the beam dis-
placement is simply the amplitude ymax =

v0

𝜔
=

v0√
3 E I
m l3

and the time where

the displacement is maximum is given by

𝜔 tmax = 𝜋

2
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y(t)

0
0 t, s

v0⎯

⎯2⎯
3
2⎯

2⎯ππππ
ω ωωω

ω

Figure 8.19 Displacement plot to find maximum value.

or
tmax = 𝜋

2𝜔
.

(b) The position when the velocity is zero is simply the maximum value

ymax = v0

√
m l3

3 E I
. (8.24)

The acceleration found in part (a) is given by a(t) = −v0 𝜔 sin𝜔 t. Therefore,
the acceleration when the velocity is zero is given by

a(tmax) = −v0 𝜔 sin (𝜔 tmax)

= −v0 𝜔 sin
(
𝜋

2

)
= −v0 𝜔

= −v0

√
3 E I
m l3

.

Note: a(t) = −v0 𝜔 sin𝜔 t = −𝜔2
(

v0
𝜔

sin𝜔 t
)
= −𝜔2 y(t). Therefore, the accel-

eration is maximum when the displacement y(t) is maximum. Since the second
derivative of a sinusoid is also a sinusoid of the same frequency (scaled by −𝜔2), this
is a general result for harmonic motion of any system.
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8.4 APPLICATIONS OF DERIVATIVES IN ELECTRIC CIRCUITS

Derivatives play a very important role in electric circuits. For example, the rela-
tionship between voltage and current for both the inductor and the capacitor is
a derivative relationship. The relationship between power and energy is also a
derivative relationship. Before discussing the applications of derivatives in electric
circuits, the relationship between different variables in circuit elements is discussed
briefly here.

Consider a circuit element as shown in Fig. 8.20, where v(t) is the voltage in
volts (V) and i(t) is the current in amperes (A). Note that the current always flows
through the circuit element and the voltage is always across the element.

Circuit element

−

+
i(t)

v(t)

Figure 8.20 Voltage and current in a circuit element.

The voltage v(t) is the rate of change of electric potential energy w(t) (in joules (J))
per unit charge q(t) (in coulomb (C)), that is, the voltage is the derivative of the
electric potential energy with respect to charge, written as

v(t) = dw
dq

V.

The current i(t) is the rate of change (i.e., derivative) of electric charge per unit time
(t in s), written as

i(t) =
dq(t)

dt
A.

The power p(t) (in watts (W)) is the rate of change (i.e., derivative) of electric energy
per unit time, written as

p(t) = dw(t)
dt

W.

Note that the power can be written as the product of voltage and current using the
chain rule of derivatives:

p(t) = dw(t)
dt

= dw
dq

×
dq
dt

or
p(t) = v(t) × i(t). (8.25)

The chain rule of derivative is a rule for differentiating composition of functions; for
example, if f is a function of g and g is a function of t, then the derivative of composite
function f (g(t)) with respect to t can be written as

df
dt

=
df
dg

×
dg
dt

. (8.26)
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For example, the function f (t) = sin(2𝜋t) can be written as f (t) = sin(g(t)), where
g(t) = 2𝜋t. By the chain rule of equation (8.26),

df
dt

=
df
dg

×
dg
dt

= d
dt
(sin(g)) × d

dt
(2𝜋t)

= cos(g) × d
dt
(2𝜋t)

= cos(g) × (2𝜋)

= 2𝜋 cos(2𝜋t).

The chain rule is also useful in differentiating the power of sinusoidal function such
as y1(t) = sin2(2𝜋t) or the power of the polynomial function such as y2(t) = (2t + 10)2.
The derivatives of these functions are obtained as

dy1

dt
= d

dt

(
(sin(2𝜋t))2

)
= 2 (sin(2𝜋t))1 × d

dt
(sin(2𝜋t))

= 2 sin(2𝜋t) × (2𝜋 cos(2𝜋t))

= 4𝜋 sin(2𝜋t) cos(2𝜋t)

and

dy2

dt
= d

dt

(
(2t + 10)2

)
= 2 (2t + 10)1 × d

dt
(2t + 10)

= 2 (2t + 10) × (2)

= 4 (2t + 10)

The following example will illustrate some of the derivative relationships dis-
cussed above.

Example
8-6

For a particular circuit element, the charge is

q(t) = 1
50

sin 250𝜋 t C (8.27)

and the voltage supplied by the voltage source shown in Fig. 8.21 is

v(t) = 100 sin 250𝜋 t V. (8.28)
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Element

i(t)

v(t) +
−

Figure 8.21 Voltage applied to a particular circuit element.

Find the following quantities:

(a) The current, i(t).
(b) The power, p(t).
(c) The maximum power pmax delivered to the circuit element by the voltage

source.

Solution (a) Current: The current i(t) can be determined by differentiating the
charge q(t) as

i(t) =
dq(t)

dt

= d
dt

( 1
50

sin 250𝜋 t)

= 1
50

(250𝜋 cos 250𝜋 t)

or
i(t) = 5𝜋 cos 250𝜋 t A. (8.29)

(b) Power: The power p(t) can be determined by multiplying the voltage given in
equation (8.28) and the current calculated in equation (8.29) as

p(t) = v(t) i(t)

= (100 sin 250𝜋 t) (5𝜋 cos 250𝜋 t)

= 500𝜋 (sin 250𝜋 t) (cos 250𝜋 t)

or
p(t) = 250𝜋 sin 500𝜋 t W. (8.30)

The power p(t) = 250𝜋 sin 500𝜋 t W in equation (8.30) is obtained by
using the double-angle trigonometric identity sin(2 𝜃) = 2 sin 𝜃 cos 𝜃 or

(sin 250𝜋 t) (cos 250𝜋 t) = sin( 500𝜋 t)
2

, which gives p(t) = 250𝜋 sin 500𝜋 t.

(c) Maximum Power Delivered to the Circuit: As discussed in Section 8.3, the
maximum value of a trigonometric function such as p(t) = 250𝜋 (sin 500𝜋 t)
can be found without differentiating the function and equating the result to
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zero. Since −1 ≤ sin 500𝜋 t ≤ 1, the power delivered to the circuit element
is maximum when sin 500𝜋 t = 1. Therefore,

pmax = 250𝜋 W,

which is simply the amplitude of the power.

8.4.1 Current and Voltage in an Inductor

The current–voltage relationship for an inductor element (Fig. 8.22) is given by

v(t) = L
di(t)
dt

, (8.31)

where v(t) is the voltage across the inductor in V, i(t) is the current flowing through
the inductor in A, and L is the inductance of the inductor in henry (H). Note that if
the inductance is given in mH (1 mH (millihenry) = 10−3 H), it must be converted to
H before using it in equation (8.31).

Circuit element

v(t) L

+

−

i(t)

Figure 8.22 Inductor as a circuit element.

Example
8-7

For the inductor shown in Fig. 8.22, if L = 100 mH and i(t) = t e−3t A.

(a) Find the voltage v(t) = L
di(t)
dt

.

(b) Find the value of the current when the voltage is zero.

(c) Use the results of parts (a) and (b) to sketch the current i(t).

Solution (a) The voltage v(t)is determined as

v(t) = L
di(t)
dt

= (100 × 10−3) di(t)
dt

or
v(t) = 0.1

di(t)
dt

,
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where di(t)
dt

= d
dt
(t e−3t). To differentiate the product of two functions (t and

e−3t), the product rule of differentiation (Table 8.3) is used:

d
dt
(f (t) g(t)) = f (t) d

dt
(g(t)) + g(t) d

dt
(f (t)). (8.32)

Substituting f (t) = t and g(t) = e−3 t in equation (8.32) gives

d
dt

(
t e−3t) = (t)

(
d
dt
(e−3t)

)
+
(

d
dt
(t)
) (

e−3t)
= (t)

(
−3 e−3t) + (1)

(
e−3t)

= e−3t (−3 t + 1) . (8.33)

Therefore,
v(t) = 0.1 e−3t (−3 t + 1) V. (8.34)

(b) To find the current when the voltage is zero, first find the time t when the volt-
age is zero and then substitute this time in the expression for current. Setting
equation (8.34) equal to zero gives

0.1 e−3t (−3 t + 1) = 0.

Since e−3t is never zero, it follows that (−3 t + 1) = 0, which gives t = 1∕3 s.
Therefore, the value of the current when the voltage is zero is determined by
substituting t = 1∕3 into the current i(t) = t e−3 t, which gives

i
(

1
3

)
=
(

1
3

)
e
−3

(
1
3

)

= 1
3

e−1

or
i = 0.123 A.

(c) Since the voltage is proportional to the derivative of the current, the slope
of the current is zero when the voltage is zero. Therefore, the current i(t) is
maximum (imax = 0.123 A) at t = 1∕3 s. Also, at t = 0, i(0) = 0 A. Using these
values along with the values of the current at t = 1 s (i(1s) = 0.0498 A) and at
t = 2 s (i(2s) = 0.00496 A), the approximate sketch of the current can be drawn
as shown in Fig. 8.23. Note that i = 0.123 A must be a maximum (as opposed
to a minimum) value, since it is the only location of zero slope and is greater
than the values of i(t) at either t = 0 or t = 2 s. Hence, no second derivative test
is required!
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i(t), A

0.14

0.12

0.1

0.08

0.06

imax = 0.123

0.04

0.02

0
0 0.5 1 1.5 2 2.5 3

t, s

Figure 8.23 Approximate sketch of the current waveform for example 8-7.

As seen in dynamics, derivatives are frequently used in circuits to sketch functions
for which no equations are given, as illustrated in the following example:

Example
8-8

For the given input voltage (square wave) shown in Fig. 8.24, plot the current i(t)
and the power p(t) if L = 500 mH. Assume i(0) = 0 A and p(0) = 0 W.

0

−9

L

v(t), V

v(t)

i(t) 9

8642
+
− t, s

Figure 8.24 A square-wave voltage applied to an inductor.

Solution For an inductor, the current–voltage relationship is given by v(t) = L
di(t)
dt

. Since
the voltage is known, the rate of change of the current is given by

(500 × 10−3) di(t)
dt

= v(t)

di(t)
dt

= 1
0.5

v(t) (8.35)
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or
di(t)
dt

= 2 v(t).

Therefore, the slope of the current is twice the applied voltage. Since v(t) = ± 9 V
(constant in each interval), the current waveform has a constant slope of ± 18 A/s;
in other words, the current waveform is a straight line with a constant slope of ± 18
A/s. In the interval 0 ≤ t ≤ 2, the current waveform is a straight line with a slope
of 18 A/s that starts at 0 A (i(0) = 0 A). Therefore, the value of the current at t = 2
s is 36 A. In the interval 2 < t ≤ 4, the current waveform is a straight line starting
at 36 A (at t = 2 s) with a slope of −18 A/s. Therefore, the value of the current at
t = 4 s is 0 A. This completes one cycle of the current waveform. Since the value of
the current at t = 4 s is 0 (the same as at t = 0 s) and the applied voltage between
interval 4 < t ≤ 8 is the same as the applied voltage between 0 ≤ t ≤ 4, the
waveform for the current from 4 ≤ t ≤ 8 is the same as the waveform of the
current from 0 ≤ t ≤ 4. The resulting plot of i(t) is shown in Fig. 8.25. Hence,
when a square-wave voltage is applied to an inductor, the resulting current is a
triangular wave.

i(t), A

36

0

0 2 4 6 8
t, s

Figure 8.25 Sketch of the current waveform for example 8-8.

Since p(t) = v(t) i(t) and the voltage is ± 9 V, the power is given by p(t) = (± 9) i(t)
W. In the interval 0 ≤ t ≤ 2, v(t) = 9 V, therefore, p(t) = 9 i(t) W. The waveform
of the power is a straight line starting at 0 W with a slope of (9 ×18) = 162 W/s.
Therefore, the power delivered to the inductor just before t = 2 s is 324 W. Just after
t = 2 s, the voltage is −9 V and the current is 36 A. Thus, the power jumps down to
(−9) (36) = −324 W. In the interval 2 < t ≤ 4, v(t) = −9 V, and the current has a
negative slope of −18 A/s. Therefore, the waveform for the power is a straight line
starting at −324 W with a slope of 162 W/s. Thus, p(4)= −324 + 2 (162) = 0 W. This
completes one cycle of the power. Since the value of the power at t = 4 s is 0 (the
same as at t = 0 s) and the applied voltage and current in the interval 4 ≤ t ≤ 8
are the same as the voltage and current in the 0 ≤ t ≤ 4, the waveform for the
power from 4 ≤ t ≤ 8 is the same as the waveform of the power from 0 ≤ t ≤ 4.
The resulting plot of p(t) is shown in Fig. 8.26, and is typically referred to as a
sawtooth curve.
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p(t), W

324

0

0 2 4 6 8
t, s

−324

Figure 8.26 Sketch of the power for example 8-8.

8.4.2 Current and Voltage in a Capacitor

The current–voltage relationship for a capacitive element (Fig. 8.27) is given by

i(t) = C
dv(t)

dt
, (8.36)

where v(t) is the voltage across the capacitor in V, i(t) is the current flowing through
the capacitor in A, and C is the capacitance of the capacitor in farad (F). Note that
if the capacitance is given in 𝜇F (10−6 F), it must be converted to F before using it in
equation (8.36).

Example
8-9

Consider the capacitive element shown in Fig. 8.27 with C = 25 𝜇F and
v(t) = 20 e−500 t sin 5000𝜋 t V. Find the current i(t).

i(t)

v(t) C

−
Circuit element

Figure 8.27 Capacitor as a circuit element.

Solution The current i(t) can be found by using equation (8.36) as

i(t) = C
dv(t)

dt
.

Substituting the value of C gives

i(t) = (25 × 10−6) dv(t)
dt

,
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where
dv(t)

dt
= d

dt
(20 e−500 t sin 5000𝜋 t). To differentiate the product of the two

functions e−500 t and sin 5000𝜋 t, the product rule of differentiation is required.
Letting f (t) = e−500 t and g(t) = sin 5000𝜋 t,

d
dt
(20 e−500tsin 5000𝜋t) = 20 × [e−500 t d

dt
(sin 5000𝜋 t)

+ (sin 5000𝜋 t) d
dt
(e−500 t)]

= 20 × [(e−500 t) (5000𝜋 cos 5000𝜋 t)

+ (sin 5000𝜋 t)(−500 e−500 t)]

= 10, 000 e−500 t (10𝜋 cos 5000𝜋 t − sin 5000𝜋 t).

Therefore,

i(t) = 25 × 10−6 (
10, 000 e−500t (10𝜋 cos 5000𝜋 t − sin 5000𝜋 t)

)
or

i(t) = 0.25 e−500 t (10𝜋 cos 5000𝜋 t − sin 5000𝜋 t)A

Using the results of Chapter 6, this can also be written as i(t) = 2.5𝜋 e−500 t sin
(5000𝜋 t + 92∘) A.

Example
8-10

The current shown in Fig. 8.28 is used to charge a capacitor with C = 20 𝜇F. Know-
ing that i(t) = dq(t)

dt
= C dv(t)

dt
, plot the charge q(t) stored in the capacitor and the

corresponding voltage v(t). Assume q(0) = v(0) = 0.

i(t)

−2

2

2 4 51

i(t), A

t, ms
0v(t)

+

−

C

4

−4

↑

Figure 8.28 Charging of a capacitor.
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Solution (a) Charge: Since i(t) =
dq(t)

dt
, the slope of the charge q(t) is given by each con-

stant value of current in each interval, for example

0 ≤ t ≤ 1 ms ∶
dq(t)

dt
= 4 C/s

1 < t ≤ 2 ms ∶
dq(t)

dt
= −2 C/s

2 < t ≤ 4 ms ∶
dq(t)

dt
= 2 C/s

4 < t ≤ 5 ms ∶
dq(t)

dt
= −4 C/s

5 < t ≤ ∞ ms ∶
dq(t)

dt
= 0 C/s.

Therefore, the plot of the charge q(t) stored in the capacitor can be drawn as
shown in Fig. 8.29. Note that since time t is in milliseconds, the charge q(t) is
in mC.

q(t), mC 

6

4 1
−2

2 4
1

qmax = 6 mC 

1
4 −4

2

t, ms
0 1 2 4 5

Figure 8.29 Charge on the capacitor in example 8-10.

(b) Voltage: To find the voltage across the capacitor, the relationship between
the charge and the voltage is first derived as

i(t) = C
dv(t)

dt
=

dq(t)
dt

⇒
dv(t)

dt
= 1

C
dq(t)

dt
.

Therefore, the derivative (slope) of the voltage v(t) is equal to the derivative
(slope) of the charge q(t) multiplied by the reciprocal of the capacitance. Sub-
stituting the value of C gives

dv(t)
dt

= 1
20 × 10−6

dq(t)
dt

or
dv(t)

dt
= 50 × 103 dq(t)

dt
.

The plot of the voltage is thus the same as the plot of the charge with the
ordinate scaled by 50 × 103, as shown in Fig. 8.30.
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v(t), V 

300
v

max = 300 V

200

100

0 1 2 4 5
t, ms

Figure 8.30 Voltage across the capacitor.

Note that while the time is still measured in milliseconds, the voltage is measured
in volts.

8.5 APPLICATIONS OF DERIVATIVES IN STRENGTH
OF MATERIALS

In this section, the derivative relationship for beams under transverse loading
conditions will be discussed. The locations and values of maximum deflections are
obtained using the derivatives, and results are used to sketch the deflection. This
section also considers the application of derivatives to maximum stress under axial
loading and torsion.

Consider a beam with elastic modulus E (lb/in.2 or N/m2) and second moment
of area I (in.4 or m4) as shown in Fig. 8.31. The product E I is called the flexural
rigidity and is a measure of how stiff the beam is. If the beam is loaded with a dis-
tributed transverse load q(x) (lb/in. or N/m), the beam deflects in the y-direction with

a deflection of y(x) (in. or m) and a slope of 𝜃(x) =
dy(x)

dx
in radians.

y

q(x) Beam with flexural rigidity EI

y(x)

x

θ(x)

Figure 8.31 A beam loaded in the y-direction.

The internal moments and forces in the beam shown in Fig. 8.32 are given by the
expressions

Bending Moment: M(x) = EI
d 𝜃(x)

dx
= EI

d2y(x)
dx2

lb-in. or N-m (8.37)
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Shear Force: V(x) = d M(x)
dx

= EI
d3y(x)

dx3
lb or N (8.38)

Distributed Load: q(x) = −d V(x)
dx

= −EI
d4y(x)

dx4
lb/in. or N/m (8.39)

M(x)
q(x)

V(x)

Figure 8.32 The internal forces in a beam loaded by a distributed load.

More detailed background on the above relations can be found in any book on
strength of materials.

Example
8-11

Consider a cantilever beam of length l loaded by a force P at the free end, as shown
in Fig. 8.33. If the deflection is given by

y(x) = P
6 EI

(
x3 − 3 l x2) m, (8.40)

find the deflection and slope at the free end x = l.

x

P

l

y(x)

y

Figure 8.33 Cantilever beam with an end load P.

Solution Deflection: The deflection of the beam at the free end can be determined by
substituting x = l in equation (8.40), which gives

y(l) = P
6 EI

[
l3 − 3 l (l2)

]
= P

6 EI

(
−2 l3)

or
y(l) = − P l3

3 EI
m.

This classic result is used in a range of mechanical and civil engineering courses.
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Slope: The slope of the deflection 𝜃(x) can be found by differentiating the deflec-
tion y(x) as

𝜃(x) =
dy(x)

dx

= d
dx

[ P
6 EI

(
x3 − 3 l x2)]

= P
6 EI

[
d

dx
(x3) − 3 l

d
dx

(x2)
]

= P
6 EI

[
3 (x2) − 3 l (2 x)

]
= P

6 EI

(
3 x2 − 6 l x

)
or

𝜃(x) = P
2 EI

(x2 − 2 l x) rad. (8.41)

Note that the parameters P, l, E, and I are all treated as constants.
The slope 𝜃(x) at the free end can now be determined by substituting x = l in.

equation (8.41) as

𝜃(l) = P
2 EI

[l2 − 2 l (l)]

= P
2 EI

(− l2)

or
𝜃(l) = − P l2

2 EI
rad.

Note: It can be seen by inspection that both the deflection and the slope of deflec-
tion are maximum at the free end, for example:

ymax = − P l3

3 EI

𝜃max = − P l2

2 EI
.

It can be seen that doubling the load P would increase the maximum deflection and
slope by a factor of 2. However, doubling the length l would increase the maximum
deflection by a factor of 8, and the maximum slope by a factor of 4!

Example
8-12

Consider a simply supported beam of length l is subjected to a central load P, as
shown in Fig. 8.34. For 0 ≤ x ≤ 1/2, the deflection is given by

y(x) = P
48 EI

(
4 x3 − 3 l2 x

)
m. (8.42)

Determine the maximum defection ymax, as well as the slope at the end x = 0.
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y

x

P

y(x)

l

l
2

Figure 8.34 A simply supported beam with a central load P.

Solution The deflection is maximum when
dy(x)

dx
= 𝜃(x) = 0. The slope of the deflection can

be found as

𝜃(x) =
dy(x)

dx

= d
dx

[ P
48 EI

(4 x3 − 3 l2 x)
]

= P
48 EI

[
d

dx
(4 x3) − d

dx
(3 l2 x)

]

= P
48 EI

[
4 d

dx
(x3) − 3 l2 d

dx
(x)

]

= P
48 EI

[
4(3 x2) − 3 l2(1)

]
= P

48 EI

(
12 x2 − 3 l2)

or
𝜃(x) = P

16 EI

(
4 x2 − l2) . (8.43)

To find the location of the maximum deflection, 𝜃(x) is set to zero and the resulting
equation is solved for the values of x as

P
16 EI

(4 x2 − l2) = 0 ⇒ 4 x2 − l2 = 0 ⇒ x = ± l
2

.

Since the deflection is given for 0 ≤ x ≤ l∕2, the deflection is maximum at x = l∕2.
The value of the maximum deflection can now be found by substituting x = l∕2 in
equation (8.42) as

ymax = y
(

l
2

)

= P
48 EI

[
4
(

l
2

)3

− 3 l2
(

l
2

)]

= P
48 EI

(
l3

2
− 3 l3

2

)
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or
ymax = − P l3

48 EI
m.

Likewise, the slope 𝜃(x) at x = 0 can be determined by substituting x = 0 in
equation (8.43) as

𝜃(0) = P
16 EI

(4 ∗ 0 − l2)

= P
16 EI

(
− l2)

or
𝜃(0) = − P l2

16 EI
rad.

Example
8-13

A simply supported beam of length l is subjected to a distributed load q(x) =
w0 sin

(
𝜋 x
l

)
as shown in Fig. 8.35. If the deflection is given by

y(x) = −
w0 l4

𝜋4 EI
sin

(
𝜋 x
l

)
m (8.44)

find the slope 𝜃(x), the moment M(x), and the shear force V(x).

x

y

l

q(x) = w0 sin ⎯x
l

π

Figure 8.35 A simply supported beam with a sinusoidal load.

Solution Slope: The slope of the deflection 𝜃(x) is given by

𝜃(x) =
dy(x)

dx

= d
dx

[
−

w0 l4

𝜋4 EI
sin

(
𝜋 x
l

)]

= −
w0 l4

𝜋4 EI

[
d

dx
(sin

(
𝜋 x
l

)]

= −
w0 l4

𝜋4 EI

[
𝜋

l
cos

(
𝜋 x
l

)]



Trim Size: 8in x 10in Rattan2e c08.tex V1 - 02/17/2021 7:25pm Page 260�

� �

�

260 Chapter 8 Derivatives in Engineering

or

𝜃(x) = −
w0 l3

𝜋3 EI
cos

(
𝜋 x
l

)
rad. (8.45)

Moment: By definition, the moment M(x) is obtained by multiplying the derivative
of the slope 𝜃(x) by E I, or

M(x) = E I
d𝜃(x)

dx
= E I

d2y(x)
dx2

.

Substituting equation (8.45) for 𝜃(x) gives

M(x) = EI
d
dx

[
−

w0 l3

𝜋3 EI
cos

(
𝜋 x
l

)]

= −
w0 l3

𝜋3

[
−𝜋

l
sin

(
𝜋 x
l

)]
or

M(x) =
w0 l2

𝜋2
sin

(
𝜋 x
l

)
N-m. (8.46)

Shear Force: By definition, the shear force V(x) is the derivative of the moment
M(x), or

V(x) = dM(x)
dx

= E I
d3y(x)

dx3
.

Substituting equation (8.46) for M(x) gives

V(x) = d
dx

[
w0 l2

𝜋2
sin

(
𝜋 x
l

)]

=
w0 l2

𝜋2

[
𝜋

l
cos

(
𝜋 x
l

)]
or

V(x) =
w0 l
𝜋

cos
(
𝜋 x
l

)
N. (8.47)

The above answer can be checked by showing that q(x) = −d V(x)
dx

as

q(x) = − d
dx

[
w0 l
𝜋

cos
(
𝜋 x
l

)]

= −
w0 l
𝜋

[
−𝜋

l
sin

(
𝜋 x
l

)]
or

q(x) = w0 sin
(
𝜋 x
l

)
N/m, (8.48)

which matches the applied load in Fig. 8.35.
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8.5.1 Maximum Stress under Axial Loading

In this section, the application of derivatives in finding maximum stress under axial
loading is discussed. A normal stress 𝜎 results when a bar is subjected to an axial
load P (through the centroid of the cross section), as shown in Fig. 8.36. The normal
stress is given by

𝜎 = P
A
, (8.49)

where A is the cross-sectional area of the section perpendicular to longitudinal axis
of the bar. Therefore, the normal stress 𝜎 acts perpendicular to the cross section and
has units of force per unit area (psi or N/m2).

P A P

Figure 8.36 A rectangular bar under axial loading.

To find the stress on an oblique plane, consider an inclined section of the bar as shown
in Fig. 8.37.

A

P Aθ
θ

P Aθθ
A

Figure 8.37 Inclined section of the rectangular bar.

The relationship between the cross-sectional area perpendicular to the longitudinal
axis and the area of the inclined plane is given by

A𝜃 cos 𝜃 = A

A𝜃 =
A

cos 𝜃
.

The force P can be resolved into components perpendicular to the inclined plane
F and parallel to the inclined plane V. The free-body diagram of the forces acting
on the oblique plane is shown in Fig. 8.38. Note that the resultant force in the axial
direction must be equal to P to satisfy equilibrium.

Aθ
A F

θ
P

θ P

V

Figure 8.38 Free-body diagram.



Trim Size: 8in x 10in Rattan2e c08.tex V1 - 02/17/2021 7:25pm Page 262�

� �

�

262 Chapter 8 Derivatives in Engineering

The relationship among P, F, and V can be found by using the right triangle shown
in Fig. 8.39 as

F = P cos 𝜃

V = P sin 𝜃

V = P sin

F = P cos

P

θ

 θ

 θ

Figure 8.39 Triangle showing force P, F, and V.

The force perpendicular to the inclined cross section F produces a normal stress 𝜎𝜃
(shown in Fig. 8.40) given by

𝜎𝜃 =
F

A𝜃

= P cos 𝜃
A∕cos 𝜃

= P cos2 𝜃

A
. (8.50)

Aθ

A
σθ

σ

τθ

Figure 8.40 Normal and shear stresses acting on the inclined cross section.

The tangential force V produces a shear stress 𝜏𝜃 given as

𝜏𝜃 =
V
A𝜃

= P sin 𝜃

A∕cos 𝜃

= P sin 𝜃 cos 𝜃
A

. (8.51)
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Substituting 𝜎 = P
A

from (8.49) into equations (8.50) and (8.51), the normal and
shear stresses on the inclined cross section are given by

𝜎𝜃 = 𝜎 cos2 𝜃 (8.52)

𝜏𝜃 = 𝜎 sin 𝜃 cos 𝜃. (8.53)

In general, brittle materials like glass, concrete, and cast iron fail due to maximum
values of 𝜎𝜃 (normal stress). However, ductile materials like steel, aluminum, and
brass fail due to maximum values of 𝜏𝜃 (shear stress).

Example
8-14

Use derivatives to find the values of 𝜃 where 𝜎𝜃 and 𝜏𝜃 are maximum, and find their
maximum values.

Solution (a) First, find the derivative of 𝜎𝜃 with respect to 𝜃: The derivative of 𝜎𝜃 given by
equation (8.52) is

d𝜎𝜃
d𝜃

= 𝜎
d

d𝜃
(cos2(𝜃))

= 𝜎
d

d𝜃
(cos 𝜃 cos 𝜃)

= 𝜎 (cos 𝜃 (−sin 𝜃) + cos 𝜃 (−sin 𝜃))

= −2 𝜎 (cos 𝜃 sin 𝜃). (8.54)

(b) Next, equate the derivative in equation (8.54) to zero and solve the resulting
equation for the value of 𝜃 between 0 and 90∘ where 𝜎𝜃 is maximum. Therefore,
−2 cos 𝜃 sin 𝜃 = 0, which gives

cos 𝜃 = 0 ⇒ 𝜃 = 90∘

or
sin 𝜃 = 0 ⇒ 𝜃 = 0∘.

Therefore, 𝜃 = 0∘ and 90∘ are the critical points; in other words at
𝜃 = 0∘ and 90∘, 𝜎𝜃 has a local maximum or minimum. To find the value
of 𝜃 where 𝜎𝜃 has a maximum, the second derivative test is performed. The
second derivative of 𝜎𝜃 is given by

d2𝜎𝜃

d𝜃2
= d

d𝜃
(−2 𝜎 cos 𝜃 sin 𝜃)

= −2 𝜎 d
d𝜃

(cos 𝜃 sin 𝜃)

= −2 𝜎
[

cos 𝜃 d
d𝜃

(sin 𝜃) + d
d𝜃

(cos 𝜃) (sin 𝜃)
]

= −2 𝜎
[
cos 𝜃(cos 𝜃) + (−sin 𝜃) sin 𝜃

]
= −2 𝜎 (cos2 𝜃 − sin2

𝜃)
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or
d2𝜎𝜃

d𝜃2
= −2 𝜎 cos 2 𝜃

where cos 2 𝜃 = cos2 𝜃 − sin2
𝜃. For 𝜃 = 0∘,

d2𝜎𝜃

d𝜃2
= −2 𝜎 < 0. So 𝜎𝜃 has a max-

imum value at 𝜃 = 0∘.

For 𝜃 = 90∘,
d2𝜎𝜃

d𝜃2
= −2 𝜎 cos(180∘) = 2 𝜎 > 0; therefore, 𝜎𝜃 has a

minimum value at 𝜃 = 90∘.

Maximum Value of 𝜎𝜃 : Substituting 𝜃 = 0∘ in equation (8.52) gives

𝜎max = 𝜎 cos2 (0∘) = 𝜎.

This means that the largest normal stress during axial loading is simply the applied
stress 𝜎!

Value of 𝜃 where 𝜏𝜃 is maximum:

(a) First, find the derivative of 𝜏𝜃 with respect to 𝜃: The derivative of 𝜏𝜃 given by
equation (8.53) is given by

d𝜏𝜃
d𝜃

= d
d𝜃

(𝜎 sin 𝜃 cos 𝜃)

= 𝜎
d

d𝜃
(sin 𝜃 cos 𝜃)

= 𝜎
d

d𝜃

(
sin 2 𝜃

2

)

= 𝜎

2
(2 cos 2 𝜃)

or
d𝜏𝜃
d𝜃

= 𝜎 cos 2 𝜃. (8.55)

(b) Next, equate the derivative in equation (8.55) to zero and solve the result-
ing equation 𝜎 cos 2 𝜃 = 0 for the value of 𝜃 (between 0 and 90∘) where 𝜏𝜃 is
maximum:

cos 2 𝜃 = 0 ⇒ 2 𝜃 = 90∘ ⇒ 𝜃 = 45∘.

Therefore, 𝜏𝜃 has a local maximum or minimum at 𝜃 = 45∘. To find whether 𝜏𝜃
has a maximum or minimum at 𝜃 = 45∘, the second derivative test is performed.
The second derivative of 𝜏𝜃 is given by

d2𝜏𝜃

d𝜃2
= d

d𝜃
(𝜎 cos 2 𝜃)

= 𝜎 (−sin 2 𝜃)(2)

= −2 𝜎 sin 2 𝜃
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For 0 ≤ 𝜃 ≤ 90∘ ⇒ 0 ≤ 2 𝜃 ≤ 180∘ ⇒ sin 2 𝜃 > 0, therefore,
d2𝜏𝜃

d𝜃2
< 0.

Since the second derivative is negative, 𝜏𝜃 has a maximum value at 𝜃 = 45∘.

Maximum Value of 𝜏𝜃 : Substituting 𝜃 = 45∘ in equation (8.53) gives

𝜏max = 𝜎 sin 45∘, cos 45∘

= 𝜎

(√
2

2

) (√
2

2

)

or

𝜏max =
𝜎

2
at 𝜃 = 45∘.

Thus, the maximum shear stress during axial loading is equal to half the applied nor-
mal stress, but at an angle of 45∘. This is why a tensile test of a steel specimen results
in failure at a 45∘ angle.

8.6 FURTHER EXAMPLES OF DERIVATIVES IN ENGINEERING

Example
8-15

The velocity of a skydiver jumping from a height of 12,042 ft is shown in Fig. 8.41.

(a) Find the equation of the velocity v(t) for the five time intervals shown in
Fig. 8.41.

(b) Knowing that a(t) = dv
dt

, find the acceleration a(t) of the skydiver for 0 ≤ t ≤
301 s.

(c) Use the results of part (b) to sketch the acceleration a(t) for 0 ≤ t ≤ 301 s.

(b) Velocity profile

y = 0 ft

y = 12,042 ft
0

v(t), ft/s

t, s

−161

−30

0 5 28 31 271 301

(31, −30)

(28, −161)

(301, 0)

(271, −30)

(5, −161)

(a) A skydiver

Figure 8.41 Velocity profile of the skydiver jumping from a height of 12,042 ft.
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Solution (a) (i) 0 ≤ t ≤ 5 s: v(t) is linear with slope

m = −161 − 0
5 − 0

= − 32.2 ft/s.

Therefore, v(t) = − 32.2 t ft/s.
(ii) 5 < t ≤ 28 s: v(t) is constant at

v(t) = −161 ft/s.

(iii) 28 < t ≤ 31 s: v(t) is linear with slope

m = −161 − (−30)
28 − 31

= −131
− 3

= 43.67 ft/s.

Therefore, v(t) = 43.67 t + b ft/s. The value of b (y-intercept) can be found
by substituting the data point (t, v(t)) = (31, − 30), which gives

−30 = 43.67(31) + b ⇒ b = −1383.67

Therefore, v(t) = 43.67 t − 1383.67 ft/s.
(iv) 31 < t ≤ 271 s: v(t) is constant at

v(t) = −30 ft/s.

(v) 271 < t ≤ 301 s: v(t) is linear with slope

m = −30 − 0
271 − 301

= −30
−30

= 1 ft/s.

Therefore, v(t) = t + b ft/s. The value of b (y-intercept) can be found by
substituting the data point (t, v(t)) = (301, 0), which gives

0 = 1(301) + b ⇒ b = −301

Therefore, v(t) = t − 301 ft/s.

(b) (i) 0 ≤ t ≤ 5 s:

a(t) = dv(t)
dt

= d
dt
(−32.3 t)

= −32.2 ft/s2
.
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(ii) 5 < t ≤ 28 s:

a(t) = dv(t)
dt

= d
dt
(−161)

= 0 ft/s2
.

(iii) 28 < t ≤ 3 s:

a(t) = dv(t)
dt

= d
dt
(43.7 t − 1383.67)

= 43.7 ft/s2
.

(iv) 31 < t ≤ 271 s:

a(t) = dv(t)
dt

= d
dt
(−30)

= 0 ft/s2
.

(v) 271 < t ≤ 301 s:

a(t) = dv(t)
dt

= d
dt
(t − 301)

= 1 ft/s2
.

(c) The acceleration of the skydiver found in part (b) can be drawn as shown
in Fig. 8.42.

a(t), ft/s2

43.67

1
0  5 28 31 271   301

t, s

−32.2

Figure 8.42 The acceleration of the skydiver.
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Example
8-16

A proposed highway traverses a hilltop bounded by uphill and downhill grades
of 10% and −8%, respectively. These grades pass through benchmarks A and B
located as shown in Fig. 8.43. With the origin of the coordinate axes (x, y) set at
benchmark A, the engineer has defined the hilltop segment of the highway by a
parabolic arc:

y(x) = a x2 + b x, (8.56)

which is tangent to the uphill grade at the origin.

(a) Find the slope of the line for the uphill grade and the value of b for the
parabolic arc.

(b) Find the equation of the line
ŷ = c x + d (8.57)

for the downhill grade.

(c) Given that at the downhill point of tangency (x), both the elevation and the
slope of the parabolic arc are equal to their respective values of the down-
hill line:

y(x) = ŷ(x) (8.58)

dy
dx

|x=x =
dŷ
dx x=x

(8.59)

Determine the point of tangency (x, y) of the parabolic arc with the downhill
grade. Also, compute its elevation.

(d) Find the equation of the parabolic arc.

Downhill point of tangency (x̄, ȳ)

y, m

6
0A

0

200
B

Uphill grade
10%

Downhill grade
− 8%

x, m

Figure 8.43 Parabolic arc traversing highway hilltop.

Solution (a) The initial slope of the parabolic arc is equal to the uphill grade, which is
expressed as a decimal fraction of 0.1. Since the arc is tangent to the uphill
grade at the origin, the initial slope is equal to the derivative of equation (8.56)
evaluated at x = 0. The derivative of the parabolic arc is given by

dy
dx

= d
dx

(a x2 + b x)

= 2 a x + b. (8.60)
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Therefore, the slope of the line for the uphill grade can be found by setting
x = 0 in equation (8.60) as

dy
dx

|x=0 = b = 0.1. (8.61)

Hence, the initial slope of the arc is given by the coefficient b of the equation
(8.56) and has the value b = 0.1.

(b) The slope of the line (equation (8.57)) for the downhill grade is given by
c = −0.08. Therefore, the equation of the line can be written as

ŷ = −0.08 x + d. (8.62)

Since this line passes through benchmark B, the value of the y-intercept d can
be found by substituting the data point (200,−6) into equation (8.62) as

−6 = −0.08(200) + d

d = −6 + 16

d = 10.

Therefore, the equation of the line for the downhill slope is given by

ŷ = −0.08x + 10. (8.63)

(c) Substituting x = x in equation (8.60) gives

dy
dx

|x=x = 2 a x + 0.1. (8.64)

Evaluating the derivative of equation (8.63) at x = x gives

dŷ
dx

|x=x = −0.08. (8.65)

Substituting equations (8.64) and (8.65) into equation (8.59) gives

2 a x + 0.10 = −0.08

a x = −0.09. (8.66)

Evaluating equations (8.56) and (8.62) at x and substituting the results in
equation (8.58) gives

a x2 + 0.1 x = −0.08 x + 10

x (a x + 0.18) = 10. (8.67)

Now, substituting the value of a x from equation (8.66) into equation (8.67),
the value of x can be found as

x(−0.09 + 0.18) = 10

0.09 x = 10

x = 10
0.09

(8.68)

= 111.1 m. (8.69)
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Thus, the point of tangency lies a horizontal distance of 111.1 m from bench-
mark A. Its elevation y is obtained by substituting this value of x into equation
(8.63) as

y = ŷ(x) = −0.08 x + 10

= −0.08(111.1) + 10

= 1.11 m.

Therefore, the downhill point of tangency is given by (111.1, 1.11) m.

(d) With the value of x known, the coefficient a for the parabolic arc can be
obtained from equation (8.66) as

a x = −0.09

a = −0.09
111.1

a = −0.00081 m−1. (8.70)

The equation for the parabolic arc may now be written by substituting the
values of a and b from equations (8.70) and (8.61) into equation (8.56) as

y = −0.00081 x2 + 0.1 x.

PROBLEMS

8-1. A model rocket is fired from the roof of
a 80 ft tall building as shown in Fig. P8.1.
The height of the rocket is given by

y(t) = y(0) + v(0) t − 1
2

g t2 ft,

where y(t) is the height of the rocket
at time t, y(0) = H = 80 ft is the initial
height of the rocket, v(0) = 120 ft/s is
the initial velocity of the rocket, and
g = 32.2 ft/s2 is the acceleration due to
gravity. Find the following:
(a) Write the quadratic equation for the

height y(t) of the rocket.
(b) The velocity v(t) = dy(t)

dt
.

(c) The acceleration a(t) = dv(t)
dt

= d2y(t)
dt2

.

(d) The time required to reach the max-
imum height as well as the cor-
responding height ymax. Use your
results to sketch y(t).

g

y(t) H

Figure P8.1 A rocket fired from top of a building
in problem P8-1.

8-2. Repeat problem P8-1 if H = 15 m, v(0) =
49 m/s and g= 9.81 m/s2.

8-3. The height in the vertical plane of a ball
thrown from the ground with an initial
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velocity of v(0)= 50 m/s satisfies the rela-
tionship

y(t) = v(0) t − 1
2

g t2 m,

where g = 9.81 m/s2 is the acceleration
due to gravity.

g
y(t)

Figure P8.3 A projectile in the vertical plane.

Find the following:
(a) Write the quadratic equation for the

height y(t) of the ball.
(b) The velocity v(t) = dy(t)

dt
.

(c) The acceleration a(t) = dv(t)
dt

= d2y(t)
dt2

.

(d) The time required to reach the max-
imum height, as well as the cor-
responding height ymax. Use your
results to sketch y(t).

8-4. Repeat problem P8-3 if v(0) = 161 ft/s
and g= 32.2 ft/s2.

8-5. The motion of a particle moving in
the horizontal direction as shown in
Fig. P8.5 is described by its position x(t).
Determine the position, velocity, and
acceleration at t = 3.0 s if

(a) x(t) = 3 cos
(4

3
𝜋 t

)
+ 4 sin

(3
4
𝜋 t

)
m.

(b) x(t) = 4 t5 + 3 t2 − 9
t
+ 5

√
t m.

(c) x(t) = 4 e3 t + 5 e−4 t − 3 (et − 1) m.

v(t)

x(t)

Figure P8.5 A particle moving in the horizontal
direction.

8-6. The motion of a particle moving in the
horizontal direction as shown in Fig.
P8.5 is described by its position x(t).
Determine the position, velocity, and
acceleration at t = 1.5 s if
(a) x(t) = 4 cos(5𝜋 t) m.
(b) x(t) = 4 t3 − 6 t2 + 7 t + 2 m.
(c) x(t) = 10 sin(10𝜋 t) + 5 e3 t m.

8-7. The motion of a particle in the hori-
zontal direction as shown in Fig. P8.5 is
defined by its position x(t) = 2t3 − 30t2 +
144t + 30, where t is in seconds and x(t)
is in meters.
(a) Determine the velocity v(t) = dx∕dt

and acceleration a(t) = dv∕dt.
(b) Determine the values of the posi-

tion and acceleration when the
velocity is zero.

(c) Use your results of part (b) to
sketch the position x(t) for 0 ≤ t ≤
8 s. Clearly indicate the location and
magnitude of the local maximum
and minimum values of x(t).

8-8. The motion of a particle in the vertical
plane is shown in Fig. P8.8. The height
of the particle is given by

y(t) = 2 t3 − 15 t2 + 24 t + 8 m.

(a) Find the values of the position and
acceleration when the velocity is
zero.

(b) Use your results in part (a) to sketch
y(t) for 0 ≤ t ≤ 4 s.

y(t) = 2t3 − 15 t2 +  24 t +  8 m

Figure P8.8 Motion of a particle in the vertical
plane.

8-9. A snow skier must navigate sinusoidal
moguls while downhill skiing, as shown
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in Fig. P8.9. The vertical position of
the skier’s knees is described by the
equation y(t) = 12 − 12 cos(5t), where t
is in seconds and y(t) is in inches.

Figure P8.9 Snow skier navigating sinusoidal
moguls.

(a) Determine the velocity v(t) =
dy∕dt.

(b) Determine the acceleration a(t) =
dv∕dt.

(c) Determine the first two nonzero
values of the position and accelera-
tion at the time(s) when the velocity
is zero.

(d) Use your results of part (c) to sketch
one period of the position y(t).
Clearly indicate the location and
magnitude of the maximum value
of y(t).

8-10. The voltage across an inductor in
Fig. P8.10 is given by v(t) = L di(t)

dt
. If

i(t) = t2 e−t A and L = 0.25 H,
(a) Find the voltage, v(t).
(b) Find the value of the current when

the voltage is zero.
(c) Use the above information to

sketch i(t).

v(t) L

i(t)

+
−

Figure P8.10 Voltage and current in an inductor.

8-11. The voltage across the inductor of
Fig. P8.10 is given by v(t) = L di(t)

dt
.

Determine the voltage v(t), the power
p(t) = v(t) i(t), and the maximum power

transferred if the inductance is L =
5 mH and the current i(t) is given by
(a) i(t) = 15 e−150 t A.
(b) i(t) = 25 sin(120𝜋 t) A.

8-12. The current flowing through a capac-
itor shown in Fig. P8.12 is given by
i(t) = C dv(t)

dt
. If C = 500 𝜇F and v(t) =

250 sin(200𝜋 t) V,

C

i(t)

v(t) +
−

Figure P8.12 Current flowing through a capacitor.

(a) Find the current i(t).
(b) Find the power p(t) = v(t) i(t) and its

maximum value pmax.

8-13. Suppose the voltage applied in
Fig. P8.12 is v(t) = 10e−10t[sin(10t) −
cos(10t)] volts and the capacitance is
C = 500𝜇F.
(a) Determine the current i(t) = C dv

dt
.

(b) Determine the value of the voltage
at the first two points when the cur-
rent is zero.

(c) Evaluate the voltage at times t =
𝜋/40, 3𝜋/40, 5𝜋/40, 7𝜋/40, and
9𝜋/40 s.

(d) Use the results of parts (b) and (c)
to sketch the voltage v(t) for 0 ≤ t ≤
9𝜋∕40. Clearly indicate the location
and value of both the maximum and
minimum voltage.

8-14. The current flowing through the capaci-
tor shown in Fig. P8.12 is given by i(t) =
C dv(t)

dt
. If C = 2𝜇F and v(t) = t2 e−10 t V,

(a) Find the current i(t).
(b) Find the value of the voltage when

the current is zero.
(c) Use the above information to

sketch v(t).
8-15. The strain that results from a single

pulse during laser shock peening shown
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in Fig. P8.15 is sinusoidal and can be rep-
resented as 𝜀(t) = 0.05e−𝜋t cos(𝜋t). Note
that strain is a dimensionless quantity
(no units).

Figure P8.15 Strain induced by laser shock
peening (LSP).

(a) Determine the first three times
when the strain rate d𝜀∕dt (i.e., the
slope of 𝜀(t)) is zero.

(b) Determine if the values of strain at
those times are maxima or minima
by using d2𝜀∕dt2.

(c) Determine the values of the strain
𝜀(t) at the times from part (a).

(d) Use your results of parts (a)–(c)
to sketch the strain 𝜀(t) for 0 ≤ t ≤
2.75 s. Clearly indicate the loca-
tion and magnitude of any max/min
value(s) of 𝜀(t).

8-16. At time t = 0, a vehicle located at posi-
tion x = 0 is moving at a velocity of
10 m/s. The velocity of the vehicle for the
next 8 s is shown in Fig. P8.16.
(a) Knowing that a(t) = dv

dt
, sketch the

acceleration a(t).
(b) Knowing that v(t) = dx

dt
, sketch the

position x(t) if the maximum posi-
tion is x = 30 m and the final posi-
tion is x = 10 m.

8-17. The velocity of a speedboat starting
at position x(0) = 0 m is shown in
Fig. P8.17.
(a) Knowing that a(t) = dv∕dt, sketch

the acceleration a(t).
(b) Knowing that v(t) = dx∕dt, sketch

the position x(t) knowing that the
final position is 108 m.

8-18. A vehicle starting from rest at position
x = 0 is subjected to the acceleration a(t)
shown in Fig. P8.18.

x(t)

6 8

v(t), m/s

20

10

4

−10

t, s0

Figure P8.16 Velocity of a vehicle for
problem P8-16.

v(t), m/s

18

9

0
0 3 6 9 12 t, s

Figure P8.17 Velocity of a speedboat.

(a) Knowing that a(t) = dv
dt

, sketch the
velocity v(t).

(b) Knowing that v(t) = dx
dt

, sketch the

position x(t) if the final position is
x = 60 m. Clearly indicate both its
maximum and final values.

8-19. The acceleration of an ambulance start-
ing from rest at a position x(0) = 0 m is
shown in Fig. P8.19.
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x(t)

−10

10

0
0 2 4 6

a(t), m/s2

t, s

Figure P8.18 Acceleration of a vehicle for
problem P8-18.

0 2 4 6 8 10

a(t), m/s

6

3

−3

−6

t, s

Figure P8.19 Acceleration of an ambulance.

(a) Knowing that a(t) = dv∕dt, sketch
the velocity v(t).

(b) Knowing that v(t) = dx∕dt, sketch
the position x(t) for 0 ≤ t ≤ 10 s,
knowing that the final position is
x = −144 m.

8-20. A vehicle starting from rest at position
x = 0 is subjected to the acceleration a(t)
shown in Fig. P8.20.
(a) Knowing that a(t) = dv

dt
, sketch the

velocity v(t).
(b) Knowing that v(t) = dx

dt
, sketch the

position x(t) if the final position is
x = 260 m. Clearly indicate both its
maximum and final values.

x(t)

0 2 13 15

10

−10

0 t, s

a(t), m/s2

Figure P8.20 Acceleration of a vehicle for
problem P8-20.

8-21. A voltage is applied to an inductor of
L = 200 mH as shown in Fig. P8.21.

(a) Knowing that v(t) = L di(t)
dt

, sketch
the current across the inductor i(t).
Note that the time is measured in
milliseconds and the initial current
is 1.0 A (i.e., i(0) = 1.0 A).

(b) Sketch the power p(t) = v(t) i(t).
8-22. The voltage across an inductor is given

in Fig. P8.22. Knowing that v(t) = L di(t)
dt

and p(t) = v(t) i(t), sketch the graphs of
i(t) and p(t). Assume L = 0.25 H, i(0) =
0 A, and p(0) = 0 W.

8-23. The voltage shown in Fig. P8.23 is
applied to the inductor of L = 120 mH.
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v(t), V

100

0 0 2 4 6 

−200

8 
t, ms 

v(t) L

i(t)

+
−

−100

Figure P8.21 Voltage across an inductor for
problem P8-21.

0
0

6

−6

4 52 3
t, s

1

v(t), V

Figure P8.22 Voltage across an inductor for
problem P8-22.

v(t), V

2 

1 

0  0 2 4 6 8 

−1

t, ms 

Figure P8.23 Voltage across an inductor for
problem P8-23.

(a) Knowing that v(t) = L di(t)
dt

, sketch
the current across the inductor i(t).
Note that the time is measured in

milliseconds and the initial current
is zero amps (i.e., i(0) = 0 A).

(b) Sketch the power p(t) = i(t)v(t).
8-24. The current flowing through the capac-

itor is given in Fig. P8.24. Knowing that
i(t) = dq(t)

dt
= C dv(t)

dt
, sketch the graphs of

the stored charge q(t) and the voltage
v(t). Assume C = 250𝜇F, q(0) = 0 C,
and v(0) = 0 V.

C

i(t)

v(t) +
−

t, ms0
0 21 4 53 6

2

−1

i(t), A

Figure P8.24 Current flowing through a capacitor
for problem P8-24.

8-25. A current in amps is flowing through
the capacitor C = 100 𝜇F, as shown in
Fig. P8.25.

i(t), A

2

1

0 
0 2 4 6 

–1

–2

t , ms
8 

Figure P8.25 Current flowing through a capacitor
for problem P8-25.
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(a) Knowing that i(t) = C dv(t)
dt

, sketch
the voltage across the capacitor v(t).
Note that the time is measured in
milliseconds and the initial voltage
is zero (i.e., v(0) = 0.0 V).

(b) Sketch the power p(t) = i(t)v(t).
8-26. The current flowing through a 500 𝜇F

capacitor is given in Fig. P8.26. Knowing
that i(t) = C dv(t)

dt
, plot v(t) for 0 ≤ t ≤

4 s if v(0) = −4 V, v(2) = 2 V, v(4) = 2 V,
and the maximum voltage is 4 V.

0
0

2

−2

4 51 2 3 6
t, s

i(t), mA

Figure P8.26 Current flowing through a capacitor
for problem P8-26.

8-27. A simply supported beam is subjected
to a load P as shown in Fig. P8.27, where
a = 0.7L and b = 0.3L. For the portion
of the beam to the left of the load (0 ≤

x ≤ 0.7L), the deflection y(x) is given by

y(x) = P
2000EI

(
100 x3 − 91 L2 x

)
,

where EI is the flexural rigidity of the
beam.
(a) Determine the equation for the

slope 𝜃(x) = dy
dx

.

(b) Determine the equations for the
bending moment M(x) = EI d2y

dx2 and

shear force V(x) = dM
dx

.
(c) Determine both the location and

value of the maximum deflection.
(d) Evaluate both the deflection and

slope at the left end, x = 0.
(e) Knowing that the beam has zero

deflection and a positive slope at

the right end x = L, sketch the
deflection y(x) and clearly indicate
both the location and value of the
maximum deflection.

y P

CA B

a b 

l

x = 0

Figure P8.27 A simply supported beam for
problem P8-27.

8-28. The simply supported beam shown in

Fig. P8.27 has a = L
4

and b = 3 L
4

. The
deflection of the beam to the left of the
load is given by

y(x) = − P
128 EI

(7 L2 x − 16 x3), 0 ≤ x ≤
L
4

where EI is the flexural rigidity of the
beam. Find the following:
(a) The equation of the slope 𝜃(x) =

dy(x)
dx

.

(b) Does the maximum deflection
(where 𝜃(x) = 0) occur within the

given domain
(

0 ≤ x ≤
L
4

)
?

(c) Evaluate both the deflection and

slope at x = 0 and x = L
4

.
(d) Knowing the beam has zero deflec-

tion and positive slope at the end
x = L, estimate the location and
value of the maximum deflection
and sketch y(x) for 0 ≤ x ≤ L.

8-29. A simply supported beam is subjected
to an applied moment Mo at its center
x = L

2
as shown in Fig. P8.29. The deflec-

tion y(x) of the beam is given by
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y(x) =

⎧⎪⎪⎨⎪⎪⎩

Mo

24 EI L

(
4x3 − L2x

)
, if 0 ≤ x ≤ L∕2

Mo

24 EI L

(
4x3 − 12Lx2 + 11L2x − 3L3) , if L∕2 ≤ x ≤ L

where EI is the flexural rigidity of the
beam. Find the following:
(a) Determine the slope 𝜃(x) = dy

dx
for

BOTH domains.
(b) Determine the location of the

max/min deflection for BOTH
domains.

(c) Evaluate both the deflection and
slope at the points x = 0, x = L∕2,
and x = L. In so doing, be sure to
use the appropriate equation for
each point.

(d) Use your results from parts (b) and
(c) to sketch the deflection y(x) over
the full length of the beam.

y

L/2

L

Mo

x

Figure P8.29 A simply supported beam for
problem P8-29.

8-30. A simply supported beam is subjected
to a sinusoidal distributed load, as
shown in the Fig. P8.30. The deflection
y(x) of the beam is given by

y(x) = −
wo L4

16𝜋4 EI
sin

(2𝜋 x
L

)
,

where EI is the flexural rigidity of the
beam.
Find the following:
(a) The equation for the slope 𝜃 = dy

dx
.

(b) The value of the slope where the
deflection is zero.

(c) The value of the deflection at the
location where the slope is zero.

w(x) = w0 sin

y

x

L

x
2
L
π

Figure P8.30 A simply supported beam for
problem P8-30.

(d) Use the results of parts (b) and (c)
to sketch the deflection y(x).

8-31. A simply supported beam of length L
and flexural rigidity EI is subjected to a
linearly distributed load of intensity wo,
as shown in Fig. P8.31. The deflection
y(x) is given by

y(x) = −
wo

360 EI L

(
7L4x − 10L2x3 + 3x5)

where L is the length and EI is the flex-
ural rigidity of the beam.

x

L

y(x) q(x) =  
w0 x

L

Figure P8.31 A simply supported beam for
problem P8-31.

(a) Determine the slope 𝜃(x) = dy
dx

.
(b) Evaluate both the deflection and

slope at the points x = 0 and x = L.
(c) Determine the location and mag-

nitude of the maximum deflection
(i.e., dy∕dx = 0).

(d) Use your results from parts (b) and
(c) to sketch the deflection y(x).
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8-32. A fixed–fixed beam is subjected to a
sinusoidal distributed load, as shown in
Fig. P8.32.

w(x) = w0 cos 

L

x

x

y

2
L
π

Figure P8.32 A fixed–fixed beam subjected to a
sinusoidal distributed load.

The deflection y(x) is given by

y(x) = −
w0 L4

16𝜋4 EI

[
1 − cos

(2𝜋
L

x
)]

.

(a) Determine the equation for the
slope 𝜃 = dy

dx
.

(b) Evaluate both the deflection and
the slope at the points x = 0 and
x = L.

(c) Determine both the location and
value of the maximum deflection.

(d) Use your results of parts (b) and
(c) to sketch the deflection y(x), and
clearly indicate both the location
and value of the maximum deflec-
tion.

8-33. A simply supported beam is subject to a
moment M at x = 0 and a moment 2M
at x = L, as shown in Fig. P8.33.

L

M 2M

y(x)

x

Figure P8.33 A simply supported beam for
problem P8-33.

The deflection y(x) is given by

y(x) = M
6EIL

(
x3 + 3Lx2 − 4L2x

)
.

(a) Determine the slope 𝜃(x) = dy
dx

.
(b) Determine both the location and

value of the maximum deflection.
(c) Evaluate both the deflection and

slope at the points x = 0 and x = L.
(d) Use your results of parts (b) and (c)

to sketch the deflection y(x).
8-34. Consider the buckling of a pinned-fixed

column under a compressive load P as
shown in Fig. P8.34. The deflection y(x)
of the buckled configuration is given by

y(x) = −A
[

sin
(4.4934

L
x
)
+ 0.97616

L
x
]
,

where A is an undetermined constant.
(a) Determine the equation for the

slope 𝜃 =
dy
dx

.
(b) Evaluate both the deflection and

the slope at the points x = 0 and
x = L.

(c) Determine the location and magni-
tude of the maximum deflection.

(d) Use your results of parts (b) and
(c) to sketch the buckled deflec-
tion y(x).

x

L

y(t)

P

Figure P8.34 A pinned-fixed column under a
compressive load.

8-35. A diving board of length L and flexu-
ral rigidity EI is subjected to a load F
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at the end of the overhang x = 1.5L, as
shown in Fig. P8.35. The deflection y(x)
is given by:

y(x) =

⎧⎪⎪⎨⎪⎪⎩

y1(x) =
F

12EI
x
(
L2 − x2) , if 0 ≤ x ≤ L

y2(x) =
F(x − L)

12EI

(
2x2 − 7Lx + 3L2) , if L ≤ x ≤ 1.5 L

(a) Determine the slope 𝜃1(x) = dy∕dx
for y1(x).

(b) Determine the location and mag-
nitude of the maximum deflection
for y1(x).

(c) Evaluate both the deflection and
slope at the points x = 0 and x = L.

(d) Determine the deflection at the
very end of the overhang, y2(1.5L).

(e) Use your above results to sketch
the shape of the deflection y(x)
over the full length of the beam.
Clearly indicate the location(s) and
value(s) of the maximum and mini-
mum deflections.

y(x)

L

F

x

L/2

Figure P8.35 Simply supported diving board with
end load F.

8-36. A cantilever beam is pinned at the
end x = L, and subjected to an applied
moment Mo as shown in Fig. P8.36. The
deflection y(x) of the beam is given by

y(x) = −
Mo

4 EI L
(x3 − L x2),

where L is the length and EI is the
flexural rigidity of the beam. Find the
following:
(a) The equation of the slope 𝜃 =

dy(x)
dx

.

(b) The location and magnitude of the
maximum deflection ymax.

(b) Evaluate both the deflection and
slope at the points A and B (x = 0
and x = L).

(c) Use the results in parts (b) and (c)
to sketch the deflection y(x) and
clearly indicate the location of the
maximum deflection on the sketch.

y

Mo

A
B

L

x

Figure P8.36 A cantilever beam for problem P8-36.

8-37. The compressive stresses under the dis-
charge vane in the scroll compressor of
Fig. P8.37 are observed to be 𝜎c(t) =
9.65 − 2.95 cos(120𝜋t), where t is mea-
sured in seconds and 𝜎c(t) in ksi.
(a) Determine the first three times

where the slope of 𝜎c(t) is zero. (i.e.,
d𝜎c∕dt = 0).

(b) Determine if the compressive
stresses at those times are maxima
or minima by using d2𝜎c∕dt2.

(c) Determine the compressive stresses
𝜎c(t) at the times found in part (a).

Figure P8.37 Scroll compressor for problem P8.37.
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(d) Use your results above to sketch
the compressive stress 𝜎c(t) just
under the discharge vane for 0 ≤

t ≤ 1∕60 s. Clearly indicate the loca-
tion and magnitude of the maxi-
mum compressive stress.

8-38. The velocity of a skydiver jumping
from a height of 13,000 ft is shown in
Fig. P8.38.
(a) Find the equation of the velocity

v(t) for the five time intervals shown
in Fig. P8.38.

(b) Knowing that a(t) = dv
dt

, sketch the
acceleration a(t) of the skydiver for
0 ≤ t ≤ 180 s.

y = 0 ft

y = 13,000 ft

0

v(t), ft/s

t, s

−193.2

−18

0 6 24 27 162 180

(27, −18)

(24, −193.2)

(180, 0)

(162, −18)

(6, −193.2)

Figure P8.38 Velocity of a skydiver jumping from
a height of 13,000 ft.

y, m 

x, m
0A

0

B Downhill grade
−10%

350

–13Uphill grade
15%

Downhill point of tangency (x̄, ȳ)

Figure P8.39 Parabolic arc traversing highway hilltop.

(c) Use the results of part (b) to sketch
the height y(t) for 0 ≤ t ≤ 180 s.

8-39. A proposed highway traverses a hilltop
bounded by uphill and downhill grades
of 15% and −10%, respectively. These
grades pass through benchmarks A and
B located as shown in Fig. P8.39. With
the origin of the coordinate axes (x, y)
set at benchmark A, the engineer has
defined the hilltop segment of the high-
way by a parabolic arc

y(x) = a x2 + b x,

which is tangent to the uphill grade at
the origin.
(a) Find the slope of the line for the

uphill grade and the value of b for
the parabolic arc.

(b) Find the equation of the line

ŷ = c x + d

for the downhill grade.
(c) Given that at the downhill point of

tangency (x), both the elevation and
the slope of the parabolic arc are
equal to their respective values of
the downhill line, for example

y(x) = ŷ(x)

dy
dx

|x=x =
dŷ
dx

|x=x

determine the point of tangency
(x, y) of the parabolic arc with the
downhill grade. Also, compute its
elevation

(d) Find the equation of the parabolic
arc.
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8-40. Consider a shaft subjected to an applied
torque T, as shown in Fig. P8.40. The
internal normal and shear stresses at the
surface vary with the angle relative to
the axis and are given by

𝜎𝜃 =
32 T
𝜋 d3

sin 𝜃 cos 𝜃

𝜏𝜃 =
16 T
𝜋 d3

(cos2 𝜃 − sin2
𝜃)

Find:
(a) The angle 𝜃 where 𝜎𝜃 is maximum
(b) The angle 𝜃 where 𝜏𝜃 is maximum

T

σθ
d θ

τθ
T

Figure P8.40 Applied torque and internal stresses
in a shaft.
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CHAPTER
9

Integrals in
Engineering

This chapter will discuss what integration is and why engineers need to know it. It
is important to point out that the objective of this chapter is not to teach techniques
of integration, as discussed in a typical calculus course. Instead, the objective of this
chapter is to expose students to the importance of integration in engineering and to
illustrate its application to the problems covered in core engineering courses such as
physics, statics, dynamics, and electric circuits.

9.1 INTRODUCTION: THE ASPHALT PROBLEM

An engineering co-op had to hire an asphalt contractor to widen the truck entrance
to the corporate headquarters, as shown in Fig. 9.1. The asphalt extends 50 ft in the
x- and y-directions and has a radius of 50 ft. Thus, the required asphalt is the area
under the circular curve given by

(x − 50)2 + (y − 50)2 = 2500. (9.1)

New asphalt

50 ft

50 ft

r = 50 ft

y

x

Figure 9.1 Driveway of corporate headquarters.

The asphalt company charges by the square foot and provides an estimate based on
“eyeballing” the required area for new asphalt. The co-op asks a young engineer to
estimate the area to make sure that the quote is fair. The young engineer proposes to
estimate the area as a series of n inscribed rectangles as shown in Fig. 9.2. The area
A is given by

A ≈
n∑

i=1

f (xi)Δ x,

282
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x1 xi xn
... x

(x − 50)2 + (y − 50)2 = 2500

Δx = 50
n

(xi, f(xi))

⎯

Figure 9.2 Division of asphalt area into n inscribed rectangles.

where Δ x = 50
n

is the width of each rectangle and f (xi) is the height. The equation
of the function f (x) is obtained by solving equation (9.1) for y, which gives

y = f (x) = 50 −
√

2500 − (x − 50)2. (9.2)

Suppose, for example, that n = 4, as shown in Fig. 9.3. Here Δ x = 50
4

= 12.5 ft and
the area can be estimated as

A ≈
4∑

i=1

f (xi)Δ x

= 12.5 ∗ [f (x1) + f (x2) + f (x3) + f (x4)]. (9.3)

x

y

x1 x2 x3 x4

12.5

f(x) =  50 −   2500 − (x − 50)2

f(x1)

√
⎯⎯⎯⎯⎯⎯⎯

Figure 9.3 Calculation of area using four rectangles.



Trim Size: 8in x 10in Rattan2e c09.tex V1 - 03/15/2021 3:26pm Page 284�

� �

�

284 Chapter 9 Integrals in Engineering

The values of f (x1) . . . f (x4) are obtained by evaluating equation (9.2) at the corre-
sponding values of x:

f (x1) = f (12.5) = 16.93

f (x2) = f (25.0) = 6.70

f (x3) = f (37.5) = 1.59

f (x4) = f (50.0) = 0.0.

Substituting these values in equation (9.3) gives

A ≈ 12.5 × (16.93 + 6.70 + 1.59 + 0)

= 315.4 ft2.

This result clearly underestimates the actual value of the area. The young engineer
claims she would need an ∞ number of rectangles to get it right, or

A = limn→∞

n∑
i=1

f (xi) Δ x.

However, in comes the senior engineer, who recognizes this as the definition of the
definite integral,

limn→∞

n∑
i=1

f (xi) Δ x =
∫

b

a
f (x)dx. (9.4)

In equation (9.4), limn→∞
∑n

i=1 f (xi) Δ x is the area under f (x) between x = a and
x = b, while ∫

b
a f (x)dx is the definite integral of f (x) between x = a and x = b. In

the case of the asphalt problem, a = 0 and b = 50 since these are the limits of the
asphalt in the x-direction. Hence, the definite integral of a function over an interval
is the area under the function over that same interval. The value of the integral is
obtained from the fundamental theorem of calculus,

∫

b

a
f (x)dx = [F(x)]ba = F(b) − F(a), (9.5)

where F(x) is the antiderivative of f (x). If F(x) is the antiderivative of f (x), then f (x)
is the derivative of F(x), or

f (x) = d
dx

F(x). (9.6)
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Hence, evaluating the integral of a function amounts to finding its antiderivative (i.e.,
its derivative backward). Based on the knowledge of derivatives, the antiderivatives
(integrals) of sin x and xn can, for example, be written as

f (x) = sin x ⇒ F(x) = −cos x + C

f (x) = x2 ⇒ F(x) = x3

3
+ C

f (x) = xn ⇒ F(x) = xn+1

n + 1
+ C

where C is an arbitrary constant. Equivalently,

∫
sin(x)dx = −cos x + C

∫
x2 dx = x3

3
+ C

∫
xn dx = xn+1

n + 1
+ C.

The previous integrals are called indefinite integrals since there are no limits a and b.
Since F(x) is the antiderivative of f (x),

F(x) =
∫

f (x)dx. (9.7)

Equations (9.6) and (9.7) show that differentiation and integration are inverse oper-
ations, so that

f (x) = d
dx

F(x) = d
dx ∫

f (x)dx = f (x)

and

F(x) =
∫

f (x)dx =
∫

d
dx

F(x)dx = F(x).

Antiderivatives, or integrals of common functions are shown in Table 9.1. Note that,
a, c, n, and 𝜔 are constants as they do not depend on x.

With this background, the young engineer finds the total area as the sum of all
elemental areas dA, as shown in Fig. 9.4.

x

x

y

0

dA =  y(x) dx

y(x) =  f(x)

x = 50  
dx

Figure 9.4 Asphalt area with elemental area dA.



Trim Size: 8in x 10in Rattan2e c09.tex V1 - 03/15/2021 3:26pm Page 286�

� �

�

286 Chapter 9 Integrals in Engineering

TABLE 9.1 The antiderivatives of some common
functions in engineering.

Function, f (x) Antiderivative, F(x) = ∫ f (x)dx

sin(𝜔 x) − 1
𝜔

cos(𝜔 x) + C

cos(𝜔 x) 1
𝜔

sin(𝜔 x) + C

ea x 1
a

ea x + C

xn 1
n + 1

xn+1 + C

c f (x) c ∫ f (x)dx

f1(x) + f2(x) ∫ f1(x)dx + ∫ f2(x)dx

The total area is thus

A =
∫

50

0
dA =

∫

50

0
y(x) dx.

Substituting the value of y(x) from equation (9.2) gives

A =
∫

50

0
(50 −

√
2500 − (x − 50)2) dx

=
∫

50

0
50 dx −

∫

50

0

√
2500 − (x − 50)2 dx

= 50
∫

50

0
dx −

∫

50

0

√
2500 − (x − 50)2 dx

= 50 [x]50
0 −

∫

50

0

√
2500 − (x − 50)2 dx

= 50 (50 − 0) −
∫

50

0

√
2500 − (x − 50)2 dx

or

A = 2500 − I. (9.8)

The integral I = ∫
50

0

√
2500 − (x − 50)2 dx is not easy to evaluate by hand. How-

ever, this integral can be evaluated using MATLAB (or other engineering programs),
which gives I = 625𝜋. Substituting I into equation (9.8) gives

A = 2500 − 625𝜋

A = 536.5 ft2.
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In comes the director of engineering, who notes that the result can be calculated
without calculus! The total area is simply the area of a square (of dimension 50× 50)
minus the area of a quarter-circle of radius r = 50 ft, as shown in Fig. 9.5. Therefore

A = (50 × 50) − 1
4

[
𝜋 (50)2

]
= 2500 − 1

4
(2500𝜋)

= 2500 − 625𝜋

A = 536.5 ft2.

Quarter-circle

50 ft

50 ft

x

y

r = 50 ft

Figure 9.5 Calculation of area without calculus.

Indeed, one of the most important things about calculus in engineering is under-
standing when you actually need to use it!

9.2 CONCEPT OF WORK

Work is done when a force is applied to an object to move it a certain distance. If
the force F is constant, the work done is just the force times the distance, as shown
in Fig. 9.6.

W = F × d

Force F
Distance d

W = F × d

Figure 9.6 Force F moving an object a distance d.

If the object is moved by a constant force as shown in Fig. 9.7, the work done is the
area under the force–displacement curve

W = F × d

= F × (x2 − x1)

where d = x2 − x1 is the distance moved.
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F

Work

x = x1

x
Distance d = x2 − x1 x = x2

Figure 9.7 Work as area under a constant force curve.

If the force is not constant but is a function of x, as shown in Fig. 9.8, the area under
the curve (i.e., the work) must be determined by integration:

W =
∫

x2

x1

F(x)dx

=
∫

d

0
F(x)dx. (9.9)

d
x, m

0

F, N

Work =  area under the curve

Figure 9.8 Work as area under a variable force curve.

Calculations used to find the work done by a variable force (equation (9.9)) are
demonstrated in the following examples.

Example
9-1

The work done on the block shown in Fig. 9.7 is defined by equation (9.9). If d = 1.0
m, find the work done for the following forces:

(a) f (x) = 2 x2 + 3 x + 4 N

(b) f (x) = 2 sin
(
𝜋

2
x
)
+ 3 cos

(
𝜋

2
x
)

N

(c) f (x) = 4 e𝜋 x N
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Solution (a)

W =
∫

d

0
f (x)dx

=
∫

1

0
(2 x2 + 3 x + 4)dx

= 2
∫

1

0
x2 dx + 3

∫

1

0
x dx + 4

∫

1

0
1 dx

= 2
[

x3

3

]1

0
+ 3

[
x2

2

]1

0
+ 4 [x]10

= 2
3
(1 − 0) + 3

2
(1 − 0) + 4 (1 − 0)

= 2
3
+ 3

2
+ 4

= 37
6

or

W = 6.17 N-m.

(b)

W =
∫

d

0
f (x)dx

=
∫

1

0

[
2 sin

(
𝜋

2
x
)
+ 3 cos

(
𝜋

2
x
)]

dx

= 2
∫

1

0
sin

(
𝜋

2
x
)

dx + 3
∫

1

0
cos

(
𝜋

2
x
)

dx

= 2

⎡⎢⎢⎢⎣
−

cos
(
𝜋

2
x
)

𝜋

2

⎤⎥⎥⎥⎦
1

0

+ 3

⎡⎢⎢⎢⎣
sin

(
𝜋

2
x
)

𝜋

2

⎤⎥⎥⎥⎦
1

0

= 2
[
− 2
𝜋

cos
(
𝜋

2
x
)]1

0
+ 3

[ 2
𝜋

sin
(
𝜋

2
x
)]1

0

= − 4
𝜋

[
cos

(
𝜋

2
x
)]1

0
+ 6

𝜋

[
sin

(
𝜋

2
x
)]1

0
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= − 4
𝜋

[
cos

(
𝜋

2

)
− cos(0)

]
+ 6

𝜋

[
sin

(
𝜋

2

)
− sin(0)

]

= − 4
𝜋
(0 − 1) + 6

𝜋
(1 − 0)

= 4
𝜋
+ 6

𝜋

= 10
𝜋

or

W = 3.18 N-m.

(c)

W =
∫

d

0
f (x)dx

=
∫

1

0
(4 e𝜋 x)dx

= 4
∫

1

0
e𝜋 x dx

= 4
[

1
𝜋

e𝜋 x
]1

0

= 4
𝜋

[
e𝜋 − e0]

= 4
𝜋

[
e𝜋 − 1

]
or

W = 28.2 N-m.

Note: In all three cases, the distance moved by the object is 1.0 m, but the work
(energy) expended by the force is completely different!

9.3 APPLICATION OF INTEGRALS IN STATICS

9.3.1 Center of Gravity (Centroid)

The centroid, or center of gravity, of an object is a point within the object that repre-
sents the average location of its mass. For example, the centroid of a two-dimensional
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object bounded by a function y = f (x) is given by a point G = (x, y) as shown in
Fig. 9.9. The average x-location x of the material is given by

x =
∑

xi Ai∑
Ai

(9.10)

while the average y-location y of the area is given by

y =
∑

yi Ai∑
Ai

. (9.11)

y = y(x) = f(x)

Gx̄

ȳ

A

x

y

Figure 9.9 Centroid of a two-dimensional object.

To evaluate the summation in equations (9.10) and (9.11), consider a rectangular
element of the area of width dx and centroid (xi, yi) =

(
x, y

2

)
, as shown in Fig. 9.10.

Now, if xi = x, yi =
y(x)

2
and Ai = dA = y(x)dx is the elemental area, equations (9.10)

and (9.11) can be written as

x =
∑

xi Ai∑
Ai

=
∫ x dA

∫ dA
=

∫ x y(x)dx

∫ y(x)dx
(9.12)

and

y =
∑

yi Ai∑
Ai

=
∫

y(x)
2

dA

∫ dA
=

1
2 ∫

(y(x))2 dx

∫ y(x)dx
. (9.13)

x A

x

y

dx

y(x)

(x̄i , ȳi) = x,
2

y(x)

y(x)

2Ai = dA = y(x) dx

Figure 9.10 Two-dimensional object with elemental area dA.
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Example
9-2

Centroid of Triangular Section: Consider a triangular section of width b and
height h, as shown in Fig. 9.11. Find the location of the centroid.

h
y =  −    x + h 

b

y

x

b

ȳ

h
Gx̄

2
1

A =     hb

Figure 9.11 Centroid of triangular section.

Solution The two-dimensional triangular section shown in Fig. 9.11 is the area bounded by
the line

y(x) = −h
b

x + h. (9.14)

The area of the section is given by

A =
∫

b

0
y(x)dx

or

A = 1
2

b h, (9.15)

which is simply the area of the triangle. The above result can also be obtained by

integrating y(x) = −h
b

x + h with respect to x from 0 to b. Using the information
in equations (9.14) and (9.15), the x-location of the centroid is calculated from
equation (9.12) as

x =
∫ x y(x)dx

∫ y(x)dx

=
∫

b
0 x (−h

b
x + h)dx

1
2

b h

= 2
∫

b
0 (−h

b
x2 + h x)dx

b h

=
( 2

b h

) [
−h

b

[
x3

3

]b

0
+ h

[
x2

2

]b

0

]
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=
( 2

b h

) [
− h

3b
(b3 − 0) + h

2
(b2 − 0)

]

=
( 2

b h

) [
−h b2

3
+ h b2

2

]

=
( 2

b h

) [
h b2

6

]
or

x = b
3
.

Similarly, the y-location of the centroid is calculated from equation (9.13) as

y =

1
2 ∫

y2(x)dx

∫ y(x)dx

=
(

1
2

) ( 2
b h

)
∫

b

0

(
−h

b
x + h

)2

dx

=
(

1
b h

)
∫

b

0

[(
h2

b2

)
x2 −

(
2 h
b

)
x h + h2

]
dx

=
(

1
b h

) [
h2

b2

[
x3

3

]b

0
−
(

2 h2

b

) [
x2

2

]b

0
+ h2 [x]b0

]

=
(

1
b h

) [
h2

3 b2
(b3 − 0) − h2

b
(b2 − 0) + h2 (b − 0)

]

=
(

1
b h

) [
h2 b

3
− h2 b + h2 b

]

=
(

1
b h

) [
h2 b

3

]
or

y = h
3
.

Thus, the centroid of a triangular section of width b and height h is given by (x, y) =(
b
3
,

h
3

)
. In the above example, the coordinates of the centroid were found by using

vertical rectangles. These coordinates can also be calculated using the horizontal
rectangles, as shown in Fig. 9.12.
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y

x

b

x

y

h

dy Ai =  dA =  x dy

h
x + h y =  −

b

(x̄i, ȳi) = 
2
x , y

Figure 9.12 Evaluation of centroid using horizontal elemental areas.

The area of the horizontal element is given by

Ai = dA = x dy = g(y)dy,

where x = g(y) = −b
h

y + b is obtained by solving the equation of the line for x.
Therefore, the elemental area of the horizontal rectangle is given by

Ai = dA =
(
−b

h
y + b

)
dy.

The y-coordinate of the triangular section can be calculated as

y =
∑

yi Ai∑
Ai

=
∫ y dA

A
(9.16)

or

y =
∫

h
0 y

(
−b

h
y + b

)
dy

1
2

b h

= 2
b h ∫

h

0

(
−b

h
y2 + b y

)
dy

= 2
b h

[(
−b

h

)
∫

h

0
y2 dy + (b)

∫

h

0
y dy

]

= 2
b h

[(
− b

3h

) [
y3]h

0 +
(

b
2

) [
(y2]h

0

]

= 2
b h

[(
− b

3h

)
(h3 − 0) +

(
b
2

)
(h2 − 0)

]

= 2
b h

[
−b h2

3
+ b h2

2

]
,
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which gives

y = h
3
.

This is the same result previously found using the vertical rectangles!

Example
9-3

The geometry of a cooling fin is described by the shaded area bounded by the
parabola shown in Fig. 9.13.

(a) If the equation of the parabola is y(x) = −x2 + 4, determine the height h and
the width b of the fin.

(b) Determine the area of the cooling fin by integration with respect to x.

(c) Determine the x-coordinate of the centroid by integration with respect to x.

(d) Determine the y-coordinate of the centroid by integration with respect to x.

b

h

x, in.

y, in.

y(x) = −x2 + 4

Figure 9.13 Geometry of a cooling fin.

Solution (a) The equation of the parabola describing the cooling fin is given by

y(x) = −x2 + 4. (9.17)

The height h of the cooling fin can be found by substituting x = 0 in equation
(9.17) as

h = y(0) = −02 + 4 = 4 in.

The width b of the fin can be obtained by setting y(x) = 0, which gives

y(x) = −x2 + 4 = 0 ⇒ x2 = 4 ⇒ x = ± 2.

Since the width of the fin must be positive, it follows that b = 2 in.
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(b) The area A of the fin is calculated by integrating equation (9.17) from 0 to b as

A =
∫

b

0
y(x)dx

=
∫

2

0
(−x2 + 4)dx

=
[
−x3

3
+ 4 x

]2

0

=
[(

−23

3
+ 4 (2)

)
− (0 + 0)

]
or

A = 16
3

in.2

(c) The x-coordinate of the centroid can be found using the vertical rectangles as
illustrated in Fig. 9.14. By definition,

h

y(x) = −x2 + 4

b

y, in.

x

dA = y(x) dxy(x)
2

(x̄i, ȳi) = (x,
2

y(x)

x, in.

dx 

)

Figure 9.14 Determination of centroid using vertical rectangles.

x =
∑

xi Ai∑
Ai

where xi = x and Ai = dA = y(x)dx. Thus,

x =
∫ x y(x)dx

A

=
∫

2
0 x (−x2 + 4)dx

16
3
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= 3
16 ∫

2

0
(−x3 + 4 x)dx

= 3
16

[
−x4

4
+ 4 x2

2

]2

0

= 3
16

[(
−24

4
+ 2 (22)

)
− (0 + 0)

]
or

x = 12
16

in.

Therefore, x = 3
4

in.

(d) Similarly, the y-coordinate of the centroid can be determined by integration
with respect to x as

y =
∑

yi Ai∑
Ai

,

where yi =
y(x)

2
and Ai = y(x)dx. Thus,

y =

1
2 ∫

y2(x)dx

A

=

1
2 ∫

2

0
(−x2 + 4)2 dx

16
3

= 3
32 ∫

2

0
(x4 − 8 x2 + 16)dx

= 3
32

[
x5

5
− 8 x3

3
+ 16 x

]2

0

= 3
32

[ (
25

5
− 8 23

3
+ 16 (2)

)
− (0 + 0 + 0)

]

= 3
32

[
32
5

− 64
3

+ 32
]

= 3
[

1
5
− 2

3
+ 1

]
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= 3
[

3
15

− 10
15

+ 15
15

]

= 24
15

or

y = 8
5
.

Therefore, y = 8
5

in.

9.3.2 Alternate Definition of the Centroid

If the origin of the x–y coordinate system is located at the centroid as shown in
Fig. 9.15, then the x- and y-coordinates of the centroid are given by

x =
∫ x dA

A
= 0 (9.18)

y =
∫ y dA

A
= 0. (9.19)

y

x 
G

Figure 9.15 Triangular section with origin at centroid.

Hence, an alternative definition of the centroid is the location of the origin such that
∫ x dA = ∫ y dA = 0 (i.e., there is no first moment about the origin). As shown in
Fig. 9.16, this means that the first moment of the area about both the x- and y-axes is
zero:

First moment of area about x-axis = Mx =
∫

y dA = 0

First moment of area about y-axis = My =
∫

x dA = 0.
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dA

G

y

x
x

dA

G

y

x
y

Figure 9.16 First moment of area.

The above definition of the centroid is illustrated for a rectangular section in the
following example.

Example
9-4

Show that the coordinates of the centroid of the rectangle in Fig. 9.17 are x = y = 0.

b/2

G

h/2

y

h x

b

Figure 9.17 Rectangular section.

Solution The first moment of area about the y-axis can be calculated using vertical rectan-
gles, as shown in Fig. 9.18, which gives

∫
x dA =

∫

b
2

− b
2

x h dx

= h
[

x2

2

] b
2

− b
2

= h
2

(
b2

4
− b2

4

)
= 0.

Hence, x =
∫ x dA

A
= 0.
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dA = h dx

dx

x

b

h

y

G

Figure 9.18 x-coordinate of the centroid using vertical rectangles.

Similarly, the first moment of area about the x-axis can be calculated using hori-
zontal rectangles, as shown in Fig. 9.19, which gives

∫
y dA =

∫

h
2

− h
2

y b dy

= b
[

y2

2

] h
2

− h
2

= b
2

(
h2

4
− h2

4

)
= 0.

Hence, y =
∫ y dA

A
= 0.

dy

dA =  b dy

x

b

h

y

G

Figure 9.19 y-coordinate of the centroid using horizontal rectangles.

9.4 DISTRIBUTED LOADS

In this section, integrals are used to find the resultant force due to a distributed load,
as well as the location of that force required for statically equivalent loading. These
are among the primary applications of integrals in statics.
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9.4.1 Hydrostatic Pressure on a Retaining Wall

Consider a retaining wall of height h and width b that is subjected to a hydrostatic
pressure from fluid of density 𝜌 (Fig. 9.20). The pressure acting on the wall satisfies
the linear equation

p(y) = 𝜌 g y,

where g is the acceleration due to gravity.

Retaining wall

h

g

b

y

p(y) =     g y ρ

Figure 9.20 Hydrostatic force acting on the rectangular retaining wall.

The resultant force acting on the wall is calculated by adding up (i.e., integrating)
all the differential forces dF shown in Fig. 9.21. Since pressure is force/unit area, the
differential force is found by multiplying the value of the pressure at any depth y by
an elemental area of the wall as

dF = p(y)dA,

where dA = b dy.

p(y) 

b

y

dF

dy

dA

Figure 9.21 Forces acting on the retaining wall.

The resultant force acting on the wall is obtained by integration as

F =
∫

dF

=
∫

h

0
p(y)b dy
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=
∫

h

0
𝜌 g y b dy

= 𝜌 g b
∫

h

0
y dy

= 𝜌 g b
[

y2

2

]h

0

or

F =
𝜌 g b h2

2
.

Note that ∫ h
0 p(y)b dy = b ∫

h
0 p(y)dy is simply the width b times the area of the tri-

angle shown in Fig. 9.22. Therefore, the resultant force can be obtained from the area
under the distributed load. Since this is a triangular load, the area can be calculated
without using integration, and is given by

A = 1
2
(𝜌 g h)(h) =

𝜌 g h2

2
.

p(y)

h

ρg h

y

Figure 9.22 Area under hydrostatic pressure.

The resultant force is obtained by multiplying the area with the width b, which gives

F = b
𝜌 g h2

2
=

𝜌 g b h2

2
.

9.4.2 Distributed Loads on Beams: Statically Equivalent Loading

Fig. 9.23 shows a simply supported beam with a distributed load applied over the
entire length L. The distributed load w(x) varies in intensity with position x and has
units of force per unit length (lb/ft or N/m). The goal is to replace the distributed
load with a statically equivalent point load. As concluded in the previous section,
the equivalent load R is the area under the distributed load, and is given by

R =
∫

L

0
w(x)dx. (9.20)
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x

y

L

w(x)

Figure 9.23 Distributed load on a simply supported beam.

The equivalent R and location l are shown in Fig. 9.24.

x

y R

l

L

Figure 9.24 Beam with an equivalent point load.

To find the location of the statically equivalent force, the resultant load shown in
Fig. 9.24 must have the same moment about every point as the distributed load shown
in Fig. 9.23. For example, the moment (force times distance) about the point x = 0
must be the same for both the distributed and equivalent loads. The moment M0 for
the distributed load can be calculated by summing moments due to elemental loads
dw, as shown in Fig. 9.25. Hence,

M0 =
∫

x dw

=
∫

L

0
x w(x)dx. (9.21)

x

y

L

dw = w(x) dx

x

Figure 9.25 Beam with a small elemental load.
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The moment M0 about the x = 0 point of the equivalent load R is given by

M0 = R l,

or

M0 = l
∫

L

0
w(x)dx. (9.22)

Equating the two moments in equations (9.21) and (9.22) gives

l
∫

L

0
w(x)dx =

∫

L

0
x w(x)dx

or

l =
∫

L
0 x w(x)dx

∫
L

0 w(x)dx
. (9.23)

Equation (9.23) is identical to equation (9.12) but with w(x) instead of y(x). Hence,
it can be concluded that l = x, which is the x-coordinate of the centroid of the area
under the load! Thus, for the purpose of statics, a distributed load can always be
replaced by its resultant force acting at its centroid.

Example
9-5

Find the magnitude and location of the statically equivalent point load for
the beam of Fig. 9.26. Use your results to find the reactions at the supports
(Fig. 9.27).

x

y

L

w0
L

w(x) =   x
w0

Figure 9.26 Simply supported beam with linear distributed load.

x

y

L

w0

R1 R2

Figure 9.27 Reaction forces acting at the supports.
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Solution The resultant R is the area under the triangular load w(x), which is given by

R =
∫

L

0
w(x)dx

=
∫

L

0

(w0

L

)
x dx

=
(w0

L

) [
x2

2

]L

0

=
(w0

L

) (
L2

2
− 0

)
or

R = 1
2

w0 L.

Note that the above result is just the area under the triangle defined by w(x). The
location l of the statically equivalent load is the x-coordinate of the centroid of
the area under w(x) and can be calculated using equation (9.23) as

l =
∫

L
0 x w(x)dx

∫
L

0 w(x)dx

=
∫

L
0 x

(w0

L
x
)

dx

1
2

w0 L

= 2
L2 ∫

L

0
x2 dx

= 2
L2

[
x3

3

]L

0

= 2
3 L2

(L3 − 0)

or

l = 2 L
3

.

Note that this is one-third of the way from the base of the triangular load (i.e., the
centroid of the triangle). Hence, the location l could have been determined without
any further calculus.
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The statically equivalent loading is shown in Fig. 9.28.

x

R

R1 R2

L
3

2L
3

l

Figure 9.28 Statically equivalent loading of the beam.

For equilibrium, the sum of the forces in the y-direction must be zero, for example

R1 + R2 = R

or

R1 + R2 = 1
2

w0 L. (9.24)

Also, the sum of moments about any point on the beam must be zero. Taking the
moments about x = 0 gives

R2 L −
(

1
2

w0 L
)

2 L
3

= 0

which gives

R2 L =
w0 L2

3
or

R2 =
w0 L

3
. (9.25)

Substituting equation (9.25) in equation (9.24) gives

R1 +
w0 L

3
=

w0 L
2

.

Solving for R1 gives

R1 =
w0 L

2
−

w0 L
3

or

R1 =
w0 L

6
. (9.26)
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9.5 APPLICATIONS OF INTEGRALS IN DYNAMICS

It was discussed in Chapter 8 that if the position of a particle moving in the x-direction
as shown in Fig. 9.29 is given by x(t), the velocity v(t) is the first derivative of the
position, and the acceleration is the first derivative of the velocity (second derivative
of the position):

v(t) = dx(t)
dt

a(t) = dv(t)
dt

= d2x(t)
dt2

.

v(t), a(t)

x(t)

Figure 9.29 A particle moving in the horizontal direction.

Now, if the acceleration a(t) of the particle is given, both the velocity v(t) and the
position x(t) can be determined by integrating with respect to t. Beginning with

dv(t)
dt

= a(t) (9.27)

integrating both sides between t = t0 and any time t gives

∫

t

t0

dv(t)
dt

dt =
∫

t

t0

a(t)dt. (9.28)

By definition,
∫

t

t0

dv(t)
dt

dt = [v(t)]tt0 , so that equation (9.28) can be written as

[v(t)]tt0 =
∫

t

t0

a(t)dt,

which gives

v(t) − v(t0) =
∫

t

t0

a(t)dt

or

v(t) = v(t0) +
∫

t

t0

a(t)dt. (9.29)

Thus, the velocity of the particle at any time t is equal to the velocity at t = t0 (initial
velocity) plus the integral of the acceleration from t = t0 to the time t. Now, given
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the velocity v(t), the position x(t) can be determined by integrating with respect to t.
Beginning with

dx(t)
dt

= v(t) (9.30)

integrating both sides between t = t0 and any time t gives

∫

t

t0

dx(t)
dt

dt =
∫

t

t0

v(t)dt. (9.31)

By definition,
∫

t

t0

dx(t)
dt

dt = [x(t)]tt0 , so that equation (9.31) can be written as

[x(t)]tt0 =
∫

t

t0

v(t)dt,

which gives

x(t) − x(t0) =
∫

t

t0

v(t)dt

or

x(t) = x(t0) +
∫

t

t0

v(t)dt. (9.32)

Thus, the position of the particle at any time t is equal to the position at t = t0 (initial
position) plus the integral of the velocity from t = t0 to the time t.

Example
9-6

A ball is dropped from a height of 1.0 m at t = t0 = 0, as shown in Fig. 9.30. Find
v(t), y(t), and the time it takes for the ball to hit the ground.

a =  − 9.81 m/s2
y(t) 

1.0 m

t =  0  

Figure 9.30 A ball dropped from a height of 1 m.

Solution Since the ball is dropped from rest at time t = 0 s, v(0) = 0 m/s. Substituting t0 = 0,
a(t) = −9.81 m/s2, and v(0) = 0 in equation (9.29), the velocity at any time t can be
obtained as

v(t) = 0 +
∫

t

0
−9.81 dt

= −9.81 [ t ]t0

= −9.81 (t − 0)
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or
v(t) = −9.81 t m/s.

Now, substituting v(t) into equation (9.32), the position y(t) of the ball at any time
t can be obtained as

y(t) = y(0) +
∫

t

0
−9.81 t dt

= y(0) − 9.81
[

t2

2

]t

0

= y(0) − 9.81
2

(
t2 − 0

)
y(t) = y(0) − 4.905 t2.

Since the initial height is y(0) = 1 m, the position of the ball at any time t is given by

y(t) = 1.0 − 4.905 t2 m.

The time to impact is obtained by setting y(t) = 0 as

1.0 − 4.905 t2
impact = 0,

which gives
4.905 t2

impact = 1.

Solving for timpact gives

timpact =
√

1.0
4.905

or
timpact = 0.452 s.

Example
9-7

Suppose that a ball is thrown upward from ground level with an initial velocity
v(0) = v0 = 4.43 m/s, as shown in Fig. 9.31. Find v(t) and y(t).

y(t)

a =  − 9.81 m/s2 

v0 =  4.43 m/s

Figure 9.31 A ball thrown upward with an initial velocity.
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Solution Substituting t0 = 0, v(0) = 4.43 m/s, and a(t) = −9.81 m/s2 into equation (9.29), the
velocity of the ball at any time t is given by

v(t) = 4.43 +
∫

t

0
−9.81 dt

= 4.43 − 9.81 [ t ]t0

= 4.43 − 9.81 (t − 0)

or

v(t) = 4.43 − 9.81 t m/s. (9.33)

Now substituting the velocity v(t) into equation (9.32), the position of the ball is
given as

y(t) = y(0) +
∫

t

0
(4.43 − 9.81 t)dt

= y(0) + 4.43 [ t ]t0 − 9.81
[

t2

2

]t

0

= y(0) + 4.43 (t − 0) − 9.81
2

(
t2 − 0

)
or

y(t) = y(0) + 4.43 t − 4.905 t2.

Since the initial position is y(0) = 0 m, the position of the ball at any time t is
given by

y(t) = 4.43 t − 4.905 t2 m.

Example
9-8

A stone is thrown from the top of a 50 m high building with an initial velocity of
10 m/s, as shown in Fig. 9.32.

50 m

y(t) = 0 m 

v(0) =  10 m/s

a =  − 9.81 m/s2

y(0) =  50 m

Figure 9.32 A stone thrown from the top of a building.
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Knowing that the velocity is

v(t) = v(0) +
∫

t

0
a(t)dt (9.34)

and the position is

y(t) = y(0) +
∫

t

0
v(t)dt, (9.35)

(a) Find and plot the velocity v(t).
(b) Find and plot the position y(t).
(c) Determine both the time and the velocity when the stone hits the ground.

Solution (a) The velocity of the stone can be calculated by substituting v(0) = 10 m/s and
a(t) = −9.81 m/s2 into equation (9.34) as

v(t) = v(0) +
∫

t

0
a(t)dt

= 10 +
∫

t

0
−9.81 dt

= 10 − 9.81 [ t ]t0

= 10 − 9.81 (t − 0)

or

v(t) = 10 − 9.81 t m/s. (9.36)

The plot of the velocity is a straight line with y-intercept vo = 10 m/s and slope
−9.81 m/s2 as shown in Fig. 9.33.

v(t), m/s

10

0
1.0194 4.371

t, s

−32.88
0

Figure 9.33 Velocity of the stone.
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(b) The position of the stone can be calculated by substituting y(0) = 50 m and v(t)
from equation (9.36) into equation (9.35) as

y(t) = y(0) +
∫

t

0
v(t)dt

= 50 +
∫

t

0
(10 − 9.81 t)dt

= 50 + 10 [ t ]t0 − 9.81
[

t2

2

]t

0

= 50 + 10 (t − 0) − 9.81
2

(t2 − 0)

or

y(t) = 50 + 10 t − 4.905 t2 m. (9.37)

The plot of the position is as shown in Fig. 9.34. The maximum height can be

determined by setting
dy
dt

= v(t) = 0, which gives v(t) = 10 − 9.81 t = 0. Solving
for t gives tmax = 1.0194 s. The maximum height is thus

ymax = 50 + 10 (1.0194) − 4.905 (1.0194)2

or

ymax = 55.097m.

4.371
 t, s

1.01940
0

y(t), m

50

ymax

Figure 9.34 Position of the stone.

(c) The time it takes for the stone to hit the ground can be calculated by setting
the position y(t) equal to zero as

y(t) = 50 + 10 t − 4.905 t2 = 0
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or

t2 − 2.039 t − 10.194 = 0. (9.38)

The quadratic equation (9.38) can be solved by using one of the methods
described in Chapter 2. For example, we can complete the square as

t2 − 2.039 t = 10.194

t2 − 2.039 t +
(2.039

2

)2
= 10.194 +

(2.039
2

)2

(
t − 2.039

2

)2
= (±

√
11.233)2

t − 1.0194 = ± 3.3516

t = 1.0194 ± 3.3516

or

t = 4.371,− 2.332 s. (9.39)

Since the negative time (t = −2.332 s) in equation (9.39) is not a possible solu-
tion, it takes t = 4.371 s for the stone to hit the ground. The velocity when the
stone hits the ground is obtained by evaluating v(t) at t = 4.371, which gives

v(4.371) = 10 − 9.81 (4.371) = −32.88 m/s.

9.5.1 Graphical Interpretation

The velocity v(t) can be determined by integrating the acceleration. It follows that
the change in velocity can be determined from the area under the graph of a(t), as
shown in Fig. 9.35.

t
t2

t2
t1

t1

a(t)

A =      a(t) dt∫

Figure 9.35 Velocity as an area under the acceleration graph.
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This can be shown by considering the definition of acceleration, a(t) = dv(t)
dt

. Integrat-
ing both sides from time t1 to time t2, we get

∫

t2

t1

a(t)dt =
∫

t2

t1

dv(t)
dt

dt

= [v(t)]t2t1
or

∫

t2

t1

a(t)dt = v2 − v1.

In words, the area under a(t) between t1 and t2 equals the change in v(t) between t1
and t2. The change in velocity v2 − v1 can be added to the initial velocity v1 at time
t1 to obtain the velocity at time t2, as shown in Fig. 9.36.

v2

v2 − v1 =       a(t) dt

v(t)

v1

t1 t2
t

t2
t1

∫

Figure 9.36 Change in velocity from time t1 to t2.

Similarly, the position x(t) can be determined by integrating velocity. It follows that
the change in position can be determined from the area under the graph of v(t), as
shown in Fig. 9.37.

t1 t2
t

v(t)

A =      v(t) dt
t2
t1

∫

Figure 9.37 Position as an area under the velocity graph.
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This can be shown by considering the definition of velocity, v(t) = dx(t)
dt

. Integrating
both sides from time t1 to time t2 gives

∫

t2

t1

v(t)dt =
∫

t2

t1

dx(t)
dt

dt

= [ x(t) ]t2t1
or

∫

t2

t1

v(t)dt = x2 − x1.

In words, the area under v(t) between t1 and t2 equals the change in x(t) between t1
and t2. The change in position x2 − x1 can be added to the initial position x1 at time
t1 to obtain the position at time t2, as shown in Fig. 9.38.

x2

x(t)

x1

t1 t2
t

x2 − x1 =       v(t) dt
t2
t1

∫

Figure 9.38 Change in position from time t1 to t2.

Example
9-9

The acceleration of a vehicle is measured as shown in Fig. 9.39. Knowing that the
vehicle starts from rest at position x = 0, sketch the velocity v(t) and position x(t)
using integrals.

x(t)

0
0 2 4

2

− 2

6
t, s

a(t), m/s2

Figure 9.39 Acceleration of a vehicle for example 9-9.
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Solution (a) Velocity: Knowing v(0) = 0 and v(t) − v(t0) = ∫
t

t0
a(t)dt,

0 ≤ t ≤ 2 s: a(t) = 2 m/s2 = constant. Therefore, v(t) is a straight line with
a slope of 2 m/s2. Also, the change in velocity is

v2 − v0 =
∫

2

0
a(t)dt

or

v2 − v0 = area under a(t) between 0 and 2 s.

Thus,

v2 − v0 = (2) (2) = 4 (area of a rectangle),

which gives

v2 = v0 + 4.

Since v0 = 0,

v2 = 0 + 4 = 4 m/s.

2 < t ≤ 4 s: Since a(t) = 0 m/s2, v(t) is constant. Also,

v4 − v2 =
∫

4

2
a(t)dt

= area under a(t) between 2 and 4 s

= 0.

Thus,

v4 = v2 + 0

= 4 + 0

or

v4 = 4 m/s.

4 < t ≤ 6 s: a(t) = −2 m/s2 = constant. Therefore, v(t) is a straight line with
a slope of −2 m/s2. Also, the change in v(t) is

v6 − v4 =
∫

6

4
a(t)dt

= area under a(t) between 4 and 6s

= (−2) (2) (area of a rectangle)

or
v6 − v4 = −4.
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Thus,
v6 = v4 − 4

= 4 − 4

or
v6 = 0 m/s.

The graph of the velocity obtained above is as shown in Fig. 9.40.

v(t), m/s

4

0
0 2 4 6

t, s

Figure 9.40 Velocity of the vehicle for example 9-9.

(b) Position: Now use v(t) to sketch x(t) knowing that x(0) = 0 and x(t) − x(t0) =
∫

t
t0

v(t)dt.

0 ≤ t ≤ 2 s: v(t) is a linear function (straight line) with a slope of 2 m/s2.
Therefore, x(t) is a quadratic function with increasing slope (concave up). Also,
the change in x(t) is

x2 − x0 =
∫

2

0
v(t)dt

= area under v(t) between 0 and 2 s

= 1
2
(2) (4) (area of a triangle)

or

x2 − x0 = 4.

Thus,

x2 = x0 + 4

Since x0 = 0,

x2 = 0 + 4

or

x2 = 4 m.
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2 < t ≤ 4 s: v(t) has a constant value of 4 m/s. Therefore, x(t) is a straight
line with a slope of 4 m/s. Also, the change in x(t) is

x4 − x2 =
∫

4

2
v(t)dt

= area under v(t) between 2 and 4 s

= (2) (4) (area of a rectangle)

or

x4 − x2 = 8.

Thus,

x4 = x2 + 8

= 4 + 8

or

x4 = 12 m.

4 < t ≤ 6 s: v(t) is a linear function (straight line) with a slope of −2 m/s2.
Therefore, x(t) is a quadratic function with a decreasing slope (concave down).
Also, the change in position is

x6 − x4 =
∫

6

4
v(t)dt

= area under v(t) between 4 and 6 s

= 1
2
(2) (4) (area of a triangle)

or

x6 − x4 = 4.

Thus,

x6 = x4 + 4

= 12 + 4

or

x6 = 16 m.

The graph of the position obtained above is shown in Fig. 9.41.
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x(t), m

16

Quadratic
12

8

4

Quadratic
0

0 2

Linear

4 6
t, s

Figure 9.41 Position of the particle for example 9-7.

9.6 APPLICATIONS OF INTEGRALS IN ELECTRIC CIRCUITS

9.6.1 Current, Voltage, and Energy Stored in a Capacitor

In this section, integrals are used to obtain the voltage across a capacitor when a
current is passed through it (charging and discharging of a capacitor), as well as the
total stored energy.

Example
9-10

For t ≥ 0, a current i(t) = 24 e−40 t mA is applied to a 3𝜇F capacitor, as shown in
Fig. 9.42.

(a) Given that i(t) = C
dv(t)

dt
, find the voltage v(t) across the capacitor.

(b) Given that p(t) = v(t) i(t) = dw(t)
dt

, find the stored energy w(t) and show that

w(t) = 1
2

C v2(t).

Assume that the capacitor is initially completely discharged; in other words, the
initial voltage across the capacitor and initial energy stored is zero.

i(t) v(t)C =  3   F

+

−

↑ μ

Figure 9.42 Current applied to a capacitor.
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Solution (a) Given i(t) = C
dv(t)

dt
, it follows that

dv(t)
dt

= 1
C

i(t). (9.40)

Integrating both sides gives

∫

t

0

dv(t)
dt

dt =
∫

t

0

1
C

i(t)dt

[v(t)]t0 =
1
C ∫

t

0
i(t)dt

v(t) − v(0) = 1
C ∫

t

0
i(t)dt

or

v(t) = v(0) + 1
C ∫

t

0
i(t)dt. (9.41)

Substituting v(0) = 0 V, C = 3 × 10−6 F, and i(t) = 0.024 e−40 t A into equation
(9.41), the voltage across the capacitor at any time t is given by

v(t) = 1
3.0 × 10−6 ∫

t

0
0.024 e−40 t dt

= 0.024
3.0 × 10−6 ∫

t

0
e−40 t dt

= 8000
[
− 1

40
e−40 t

]t

0

= −8000
40

(
e−40 t − e0 )

= −200 ( e−40 t − 1)

or

v(t) = 200 ( 1 − e−40 t) V.
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(b) By definition, the power supplied to a capacitor is given by

p(t) = dw(t)
dt

. (9.42)

Integrating both sides of equation (9.42) gives

∫

t

0

dw(t)
dt

dt =
∫

t

0
p(t)dt

[ w(t) ]t0 = ∫

t

0
p(t)dt

w(t) − w(0) =
∫

t

0
p(t)dt

or

w(t) = w(0) +
∫

t

0
p(t)dt. (9.43)

Since the energy stored in the capacitor at time t = 0 is zero, w(0) = 0. The
power p(t) is given by

p(t) = v(t) i(t)

= 200 (1 − e−40 t) (0.024 e−40 t)

= (200) (0.024) e−40 t − (200 e−40 t) (0.024 e−40 t)

or

p(t) = 4.8 e−40 t − 4.8 e−80 t W. (9.44)

Substituting w(0) = 0 and p(t) from equation (9.44) into equation (9.43)
gives

w(t) = 0 +
∫

t

0
(4.8 e−40 t − 4.8 e−80 t) dt

= 4.8
[
− 1

40
e−40 t

]t

0
− 4.8

[
− 1

80
e−80 t

]t

0

= −4.8
40

(e−40 t − 1) + 4.8
80

(e−80 t − 1)

= −0.12 e−40 t + 0.12 + 0.06 e−80 t − 0.06

or

w(t) = 0.06 e−80 t − 0.12 e−40 t + 0.06 J. (9.45)
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To show that w(t) = 1
2

C v2(t), the quantity 1
2

C v2(t) can be calculated as

1
2

Cv2(t) = 1
2
(3 × 10−6) (200 − 200 e−40 t)2

= (1.5 × 10−6)
[
2002 − 2(200)(200)e−40t + (200e−40t)2

]
= (1.5 × 10−6)(4 × 104 − 8 × 104 e−40 t + 4 × 104 e−80 t)

= 0.06 e−80 t − 0.12 e−40 t + 0.06 J. (9.46)

Comparison of equations (9.45) and (9.46) reveals that w(t) = 1
2

C v2(t).

Example
9-11

The current i(t) shown in Fig. 9.43 is applied to a 20𝜇F capacitor. Sketch the voltage

v(t) across the capacitor knowing that i(t) = C
dv(t)

dt
, or v(t) = v(t0) +

1
C ∫

t

t0

i(t)dt.

Assume that the initial voltage across the capacitor is zero (i.e., v(0) = 0 V).

0

− 2

− 4

t, msi(t)
0 1 2 4 5

4

2

i(t), A

C =  20   F v(t)

+

−

↑ μ

Figure 9.43 Current applied to a capacitor.

Solution Since C = 20𝜇F,

1
C

= 1
20 × 10−6

= 106

20

= 102 × 104

20
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or
1
C

= 5 × 104 F−1.

The voltage during each time interval can now be calculated as follows:

(a) 0 ≤ t ≤ 1 ms: t0 = 0, v(t0) = v0 = 0 V, and i(t) = 4 A = constant. Therefore,

v(t) = 1
C ∫

i(t)dt is a straight line with positive slope. The voltage at time

t = 1 ms can be calculated as

v1 = v0 + 5 × 104
∫

1× 10−3

0
4 dt

= 0 + 20 × 104 [ t ]1× 10−3

0

= 20 × 104 (
1 × 10−3 − 0

)
or

v1 = 200 V.

The change in voltage across the capacitor between 0 and 1 ms can also be
calculated without evaluating the integral (i.e., from geometry) as

v1 − v0 =
1
C

× area under the current between 0 and 1 ms

= 5 × 104 [(4) (0.001)] (area of a rectangle)

or
v1 − v0 = 200 V.

Therefore, v1 = v0 + 200 = 200 V.

(b) 1 < t ≤ 2 ms: t0 = 1 ms, v(t0) = v1 = 200 V, and i(t) = −2 A = constant.

Therefore, v(t) = 1
C ∫

i(t)dt is a straight line of negative slope. The voltage

at t = 2 ms can be calculated as

v2 = v1 + 5 × 104
∫

2× 10−3

1× 10−3
(−2)dt

= 200 − 10 × 104 [ t ]2× 10−3

1× 10−3

= 200 − 10 × 104 (
2 × 10−3 − 1 × 10−3)

= 200 − 100

or

v2 = 100 V.
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The change in voltage across the capacitor between 1 and 2 ms can also be
calculated from geometry as

v2 − v1 =
1
C

× area under the current waveform between 1 and 2 ms

= 5 × 104 [ (−2) (0.001) ]

v2 − v1 = −100 V

Therefore, v2 = v1 − 100 = 200 − 100 = 100 V.

(c) 2 < t ≤ 4 ms: t0 = 2 ms, v(t0) = v2 = 100 V, and i(t) = 2 A = constant.
Therefore, v(t) = 1

C
∫ i(t)dt is a straight line with positive slope. The voltage

at t = 4 ms can be calculated as

v4 = v2 + 5 × 104
∫

4× 10−3

2× 10−3
2 dt

= 100 + 10 × 104 [ t ]4× 10−3

2× 10−3

= 100 + 10 × 104 (
4 × 10−3 − 2 × 10−3)

= 100 + 10 × 104 (
2 × 10−3)

= 100 + 200

or

v4 = 300 V.

The change in voltage across the capacitor between 2 and 4 ms can also be
calculated from geometry as

v4 − v2 =
1
C

× area under the current waveform between 2 and 4 ms

= 5 × 104 [ (2) (.002) ]

or

v4 − v2 = 200 V.

Therefore, v4 = v2 + 200 = 100 + 200 = 300 V.

(d) 4 < t ≤ 5 ms: t0 = 4 ms, v(t0) = v4 = 300 V, and i(t) = −4 A = constant.
Therefore, v(t) = 1

C
∫ i(t)dt is a straight line with negative slope. The voltage

at t = 5 ms can be calculated as

v5 = v4 + 5 × 104
∫

5× 10−3

4× 10−3
(−4)dt
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= 300 − 20 × 104 [ t ]5× 10−3

4× 10−3

= 300 − 20 × 104 (
5 × 10−3 − 4 × 10−3)

= 300 − 20 × 104 (1 × 10−3)

= 300 − 200

or

v5 = 100 V.

The change in voltage across the capacitor between 4 and 5 ms can also be
calculated from geometry as

v5 − v4 =
1
C

× area under the current waveform between 4 and 5 ms

= 5 × 104 [
(−4) (.001)

]
or

v5 − v4 = −200 V

Therefore, v5 = v4 − 200 = 300 − 200 = 100 V.

The sketch of the voltage across the capacitor is shown in Fig. 9.44.

0
0

100

200

300

1 2 54

v5

v(t), V

t, ms

v2

v1

v4

Figure 9.44 Voltage across the capacitor in example 9-11.

Example
9-12

The sawtooth current i(t) shown in Fig. 9.45 is applied to a 0.5 F capacitor.

Sketch the voltage v(t) across the capacitor knowing that i(t) = C
dv(t)

dt
or

v(t) = 1
C ∫

i(t)dt. Assume that the capacitor is completely discharged at t = 0

(i.e., v(0) = 0 V).
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4
0

− 2

2

t, s
0 1 2 5

i(t), A

i(t) C =  0.5 F v(t)

+

−

↑

Figure 9.45 Sawtooth current applied to a capacitor.

Solution The voltage across the capacitor during different time intervals can be calculated
as follows:

(a) 0 ≤ t ≤ 1 s: i(t) is a straight line, therefore v(t) = 1
C
∫ i(t)dt is a quadratic

function. The change in voltage across the capacitor between the time interval
0 to 1 s can be calculated as

v1 − v0 =
1
C ∫

t

0
i(t)dt

= 1
0.5

(area under the current waveform between 0 and 1 s)

= 2
[

1
2
(1)(−2)

]
(area of a triangle)

or

v1 − v0 = −2.

Solving for v1 gives,

v1 = v0 + (−2)

= 0 − 2

or

v1 = −2 V.

Also, since dv(t)
dt

= 1
C

i(t) is the slope of v(t) at time t, the slope of the voltage at

t = 0 is dv
dt

= 1
0.5

(−2) = −4 V/s.

At t = 1 s, the slope of the voltage is dv
dt

= 1
0.5

(0) = 0 V/s.

Therefore, v(t) is a decreasing quadratic function starting at v(0) = 0 V and
ending at −2 V, with a zero slope at t = 1 s.
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(b) 1 < t ≤ 2 s: i(t) is a straight line, therefore v(t) = 1
C
∫ i(t)dt is a quadratic

function. The change in voltage across the capacitor during the time interval
1 to 2 s can be calculated as

v2 − v1 =
1

0.5
(area under the current waveform between 1 and 2 s)

= 2
[

1
2
(1)(2)

]
(area of a triangle)

or

v2 − v1 = 2.

Solving for v2 gives

v2 = v1 + 2

= −2 + 2

or

v2 = 0 V.

Also, since dv(t)
dt

= 1
C

i(t) is the slope of v(t),

dv(t)
dt

= 0 V/s at t = 1 s,

dv(t)
dt

= 1
0.5

(2) = 4 V/s at t = 2 s.

Therefore, v(t) is an increasing quadratic function starting with a zero slope at
v1 = −2 V and ending at v2 = 0 V with a slope of 4 V/s.

Since the voltage at t = 2 s is zero and the current supplied to the capacitor between
2 and 4 s is the same as the current applied to the capacitor from 0 to 2 s, the voltage
across the capacitor between 2 and 4 s is identical to the voltage between 0 and
2 s. The same is true for remaining intervals. A sketch of the voltage across the
capacitor is shown in Fig. 9.46.

− 2

2

0 t, s
0 1 2 3 4 5 6

v(t), V

i(t)

v(t)

Figure 9.46 Voltage across a capacitor subjected to a sawtooth current.
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9.7 CURRENT AND VOLTAGE IN AN INDUCTOR

In this section, integrals are used to find the current flowing through an inductor
when it is connected across a voltage source.

Example
9-13

A voltage v(t) = 10 cos(10 t) V is applied across a 100 mH inductor, as shown in
Fig. 9.47.

L = 100 mH

i(t)

v(t) +
−

Figure 9.47 Voltage applied to an inductor.

(a) Suppose the initial current flowing through the inductor is i(0) = 10 A. Know-
ing that v(t) = L di(t)

dt
, integrate both sides of the equation to determine the

current i(t). Also, plot the current for 0 ≤ t ≤ 𝜋/5 s.

(b) Given your results in part (a), find the power p(t) = v(t) i(t) supplied to the
inductor. If the initial energy stored in the inductor is w(0) = 5 J, find the stored
energy

w(t) = w(0) +
∫

t

0
p(t)dt, (9.47)

and show that w(t) = 1
2

L i2(t).

Solution (a) The voltage/current relationship for an inductor is given by

L
di(t)
dt

= v(t)

or
di(t)
dt

= 1
L

v(t). (9.48)

Integrating both sides of equation (9.48) from an initial time t0 to time t gives

∫

t

t0

di(t)
dt

= 1
L ∫

t

t0

v(t)dt

[ i(t) ]tt0 =
1
L ∫

t

t0

v(t)dt

i(t) − i(t0) =
1
L ∫

t

t0

v(t)dt
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or

i(t) = i(t0) +
1
L ∫

t

t0

v(t)dt. (9.49)

Substituting t0 = 0, L = 0.1 H, i(0) = 10 A, and v(t) = 10 cos(10 t) V in equation
(9.49) gives

i(t) = 10 + 1
0.1 ∫

t

0
10 cos(10 t)dt

= 10 + 100
[

1
10

sin(10 t)
]t

0

= 10 + 10 ( sin 10 t − 0 )

or

i(t) = 10 + 10 sin 10 t A (9.50)

The current i(t) obtained in equation (9.50) is a periodic function with fre-
quency 𝜔 = 10 rad/s. The period is

T = 2𝜋
𝜔

= 2𝜋
10

or

T = 𝜋

5
s.

Thus, the plot of i(t) is simply the sinusoid 10 sin 10 t shifted upward by 10 A
as shown in Fig. 9.48.

20

10

0

i(t), A

0
t, s

/20π /10π 3 02/π /5π

Figure 9.48 Current flowing through the inductor in example 9-13.
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(b) The power p(t) supplied to the inductor is given by

p(t) = v(t) i(t)

= (10 cos 10 t) (10 + 10 sin 10 t)

= 100 cos 10 t + 100 sin 10 t cos 10 t

= 100 cos 10 t + 50 (2 sin 10 t cos 10 t)

= 100 cos 10 t + 50 sin 20 t

or

p(t) = 100 (cos 10 t + 0.5 sin 20 t) W. (9.51)

The energy stored in the inductor is given by

w(t) = w(0) +
∫

t

0
p(t)dt. (9.52)

Substituting w(0) = 5 J and p(t) calculated in equation (9.51) gives

w(t) = 5 +
∫

t

0
100 (cos 10 t + 0.5 sin 20 t) dt

= 5 + 100
[

sin 10 t
10

]t

0
+ 50

[
−cos 20 t

20

]t

0

= 5 + 10 (sin 10 t − 0) − 2.5 (cos 20 t − 1)

or

w(t) = 7.5 + 10 sin 10 t − 2.5 cos 20 t J. (9.53)

To show that w(t) = 1
2

L i2(t), the quantity 1
2

L i2(t) can be calculated as

1
2

L i2(t) = 1
2
(0.1) (10 + 10 sin 10 t)2

= 0.05
[

102 + 2(10)(10) sin 10 t + (10 sin 10 t)2
]

= 0.05 (100 + 200 sin 10 t + 100 sin2 10 t).
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Noting that sin2 (10 t) =
(

1 − cos 20 t
2

)
, we get

1
2

L i2(t) = 5 + 10 sin 10 t + 5
(

1 − cos 20 t
2

)

= 5 + 10 sin 10 t + 2.5 − 2.5 cos 20 t

= 7.5 + 10 sin 10 t − 2.5 cos 20 t J, (9.54)

which is the same as equation (9.53).

Example
9-14

A voltage v(t) is applied to a 500 mH inductor as shown in Fig. 9.49. Knowing that
v(t) = L di(t)

dt
(or i(t) = 1

L
∫ v(t)dt), plot the current i(t) using integrals. Assume the

initial current flowing through the inductor is zero (i.e., i(0) = 0 A).

v(t), V

− 9

0 t, s 
0 2 4 6 8

9

L = 500 mH

i(t)

v(t) +
−

Figure 9.49 Voltage applied to an inductor.

Solution Using equation (9.49), the current i(t) flowing through the inductor during each
time interval can be determined as follows:

(a) 0 ≤ t ≤ 2 s: v(t) = 9 V = constant. Therefore, i(t) = 1
L
∫ v(t)dt is a straight

line with positive slope. Also, the change in current is

i2 − i0 =
1
L ∫

2

0
v(t)dt

= 1
0.5

(area under the voltage waveform between 0 and 2 s)

= 1
0.5

[ (2) (9) ]
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or
i2 − i0 = 36 A.

Solving for i2 is

i2 = i0 + 36

= 0 + 36

or

i2 = 36 A.

Note that the equation for the current flowing through the inductor at any time
t between 0 and 2 s can also be calculated as

i(t) = i(0) + 1
L ∫

t

0
v(t)dt

= 0 + 1
0.5 ∫

t

0
9 dt

= (2) (9) [ t ]t0
or

i(t) = 18 t.

(b) 2 < t ≤ 4 s: v(t) = −9 V = constant. Therefore, i(t) = 1
L
∫ v(t)dt is a straight

line with a negative slope. Also, the change in current is

i4 − i2 =
1

0.5
(area under the voltage waveform between 2 and 4 s)

= 1
0.5

[ (2) (−9) ]

or

i4 − i2 = −36 A.

Solving for i4 gives

i4 = i2 − 36

= 36 − 36

or

i4 = 0 A.
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Note that the equation for the current flowing through the inductor at any time t
between 2 and 4 s can also be calculated as

i(t) = i(2) + 1
L ∫

t

2
v(t)dt

= 36 + 1
0.5 ∫

t

2
−9 dt

= 36 − 18 [t]t2

= 36 − 18 (t − 2)

or

i(t) = −18 t + 72.

Since the current at t = 4 s is zero (the same as at t = 0) and the voltage applied to
the inductor between 4 and 8 s is the same as the voltage from 0 to 4 s, the current
flowing through the inductor between 4 and 8 s is identical to the current between
0 and 4 s. The resulting current waveform (triangle curve) is shown in Fig. 9.50.

0 2 4 6 8
0

36

i(t), A
i(t) =  −18t + 72

t, s

Figure 9.50 Current flowing through the inductor in example 9-14.

9.8 FURTHER EXAMPLES OF INTEGRALS IN ENGINEERING

Example
9-15

A biomedical engineer measures the velocity profiles of a belted and unbelted
occupant during a 35 mph (≈ 16 m/s) frontal collision, as shown in Fig. 9.51.

(a) Knowing that x(t) = x(0) + ∫
t

0 v(t)dt, find and plot the displacement x(t) of the
belted occupant for time 0 to 50 ms. Assume that the initial displacement at
t = 0 is 0 m (i.e., x(0) = 0 m).

(b) Find and plot the displacement x(t) of the unbelted occupant for time 0 to 50
ms. Assume x(0) = 0 m.
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(c) Based on the results of parts (a) and (b), how much farther did the unbelted
occupant travel compared to the belted occupant?

Belted occupant:

+ X

Unbelted occupant:

+ X

v(t) = 16 cos(50   t)

v(t) =  0

0.050.010
0

16

t, s

v(t), m/s

v(t) = 16 cos(10   t)

0.050
0

16

t, s

v(t), m/s

π

π

Figure 9.51 Velocities of the belted and unbelted occupants during frontal collision.

Solution (a) The displacement of the belted occupant can be calculated using the expres-
sion

x(t) = x(0) +
∫

t

0
v(t)dt

(i) for 0 ≤ t ≤ 0.01 s

x(t) = 0 +
∫

t

0
16 cos(50 𝜋 t)dt

= 16
[

sin(50𝜋 t)
50𝜋

]t

0

= 16
50𝜋

[
sin(50𝜋 t) − 0

]

= 8
25𝜋

sin(50𝜋 t) m (9.55)

Therefore, x(0.01) = 8
25𝜋

sin
(
𝜋

2

)
= 0.102 m.
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(ii) 0.01 ≤ t ≤ 0.05 s

x(t) = 0.102 +
∫

t

0
0 dt

= 0.102 m. (9.56)

The displacement of the belted occupant during a frontal collision is shown in
Fig. 9.52.

t, s

x(t), m

0.102

0
0 0.01 0.05

Figure 9.52 Displacement of the belted occupant during a frontal collision.

(b) The displacement of the unbelted occupant for 0 ≤ t ≤ 0.05 s can be calcu-
lated as

x(t) = 0 +
∫

t

0
16 cos(10𝜋 t)dt

= 16
[

sin(10𝜋 t)
10𝜋

]t

0

= 16
10𝜋

[
sin(10𝜋 t) − 0

]

= 8
5𝜋

sin(10𝜋 t) m. (9.57)

Therefore, x(0.05) = 8
5𝜋

sin
(
𝜋

2

)
= 0.509 m. The displacement of the unbelted

occupant is shown in Fig. 9.53.
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t, s

x(t), m

0.509

0
0 0.05

Figure 9.53 Displacement of the unbelted occupant during a frontal collision.

(c) To find how much farther the unbelted occupant traveled during collision as
compared to the belted occupant, the total distance traveled by the belted
occupant in 50 ms is subtracted from the total distance traveled by the unbelted
occupant as

Δ x = xunbelted(0.05) − xbelted(0.05)

= 0.509 − 0.102

= 0.407 m.

Example
9-16

A biomedical engineer is evaluating an energy-absorbing aviation seat on a vertical
deceleration tower, as shown in Fig. 9.54. The acceleration profile of the drop cage
is described by

a(t) = 500 sin(40𝜋 t) m/s2.

(a) Knowing that v(t) = v(0) + ∫
t

0 a(t)dt, find and plot the velocity v(t) of the drop
cage. Assume the drop cage starts from rest at t = 0 s.

(b) What is the impact velocity vimpact of the drop cage if it takes 25 ms to hit the
ground?

(c) The total impulse I is equal to the change in momentum. For example, I =
Δp = pf − pi = mvimpact − mv0, where m is the mass of the system, vimpact is
the final velocity, v0 is the initial velocity, p is the momentum, and I is the
impulse. Find the total impulse after 25 ms. Assume that the total mass of the
drop cage, seat, and crash test dummy is 1000 kg.
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Figure 9.54 Energy-absorbing aviation seat.

Solution (a) The velocity of the cage can be calculated as

v(t) = v(0) +
∫

t

0
a(t)dt

= 0 +
∫

t

0
500 sin(40𝜋 t)dt

= 500
[
−cos(40𝜋 t)

40𝜋

]t

0

= − 500
40𝜋

[
cos(40𝜋 t) − 1

]

= 25
2𝜋

[
1 − cos(40𝜋 t)

]
m/s. (9.58)

(b) The velocity of the cage when it impacts the ground can be found by substitut-
ing t = 25 ms = 0.025 s in equation (9.58) as

vimpact =
25
2𝜋

[
1 − cos (40𝜋 (0.025))

]

= 25
2𝜋

[
1 − cos(𝜋)

]

= 25
2𝜋

[
1 − (−1)

]

= 50
2𝜋

= 7.96 m/s.
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(c) The total impulse I can be found as

I = m vimpact − m v0

= (1000) (7.96) − (1000) (0)

= 7960
kg m

s
.

Example
9-17

A civil engineer designs a building overhang to withstand a parabolic snow loading

per unit length p(x) = p̂
(

1 − x
L

)2
, as shown in Fig. 9.55.

(a) Compute the resulting force V = ∫
L

0 p(x)dx.

(b) Compute the corresponding moment M = ∫
L

0 x p(x)dx.

(c) Locate the centroid of the loading x =
∫

L
o x p(x)dx

∫
L

0 p(x)dx
= M

V
.

p̂

p(x)

x

V

M

L

V

Figure 9.55 Snow loading of a building overhang.

Solution (a) The resulting force per unit width V can be calculated as

V =
∫

L

0
p(x)dx

=
∫

L

0
p̂
(

1 − x
L

)2
dx
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=
∫

L

0
p̂
(

1 − 2 x
L

+ x2

L2

)
dx

= p̂
[
(x) − 2

L

(
x2

2

)
+ 1

L2

(
x3

3

)]L

0

= p̂
[
(L − 0) − 1

L

(
L2 − 0

)
+ 1

3 L2

(
L3 − 0

)]

= p̂
[
L − L + L

3

]

or V = p̂
L
3
. (9.59)

(b) The corresponding moment M can be calculated as

M =
∫

L

0
x p(x)dx

=
∫

L

0
p̂
[

x
(

1 − x
L

)2
]

dx

=
∫

L

0
p̂
[

x − 2 x2

L
+ x3

L2

]
dx

= p̂
[(

x2

2

)
− 2

L

(
x3

3

)
+ 1

L2

(
x4

4

)]L

0

= p̂
[(

1
2

)
(L2 − 0) − 2

3 L

(
L3 − 0

)
+ 1

4 L2

(
L4 − 0

)]

= p̂
[

L2

2
− 2 L2

3
+ L2

4

]

or M = p̂
L2

12
.
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(c) The location of the centroid x can be found as

x = M
V

=

p̂ L2

12
p̂ L
3

or x = L
4
.

Example
9-18

A building overhang is subjected to a triangular snow loading p(x), as shown in
Fig. 9.56. The overhang is constructed from two metal face plates separated by a
nonmetallic core of thickness h. This sandwich beam construction deforms primar-
ily due to shear deformation with deflection y(x) satisfying

y(x) = 1
h G ∫

x

0

[
∫

x

0
p(x)dx − V

]
dx, (9.60)

where V = p0
L
2

, p(x) = p0

(
1 − x

L

)
, and G is the shear modulus.

(a) Evaluate (9.60) for the deflection y(x).
(b) Find the location and value of maximum deflection.

p(x)

x

V

M

p
0

L

V

Core

h

Upper face plate

Lower face plate

(a) Cantilever overhang. (b) Sandwich construction.

Figure 9.56 Triangular snow loading of sandwich constructed building overhang.

Solution (a) Substituting V = p0
L
2

and p(x) = p0

(
1 − x

L

)
into equation (9.60) gives

y(x) = 1
h G ∫

x

0

[
∫

x

0
p0

(
1 − x

L

)
dx − p0

L
2

]
dx
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= 1
h G ∫

x

0

[
p0

[
x − x2

2 L

]x

0
− p0

L
2

]
dx

= 1
h G ∫

x

0

[
p0

{(
x − x2

2 L

)
− (0 − 0)

}
− p0

L
2

]
dx

=
p0

h G ∫

x

0

[
x − x2

2 L
− L

2

]
dx

=
p0

h G

[
x2

2
− x3

6 L
− L

2
x
]x

0

=
p0

h G

[(
x2

2
− x3

6 L
− L

2
x
)
− (0 − 0 − 0)

]

=
p0 x

2 h G

(
x − x2

3 L
− L

)

or y(x) = −
p0 x

2 h G

[
L − x

(
1 − x

3 L

)]
. (9.61)

(b) The location of the maximum value of the deflection can be found by equating
the derivative of y(x) to zero as

dy(x)
dx

= 0

d
dx

(
−

p0 x
2 h G

[
L − x

(
1 − x

3 L

)])
= 0

−
p0

2 h G

(
L − 2 x + 3 x2

3 L

)
= 0

x2 − 2 x L + L2 = 0

(x − L)2 = 0.

Therefore, the deflection is maximum at x = L. The value of the maximum
deflection can now be obtained by substituting x = L in equation (9.61) as

y(L) = −
p0 L
2 h G

[
L − L

(
1 − L

3 L

)]
= −

p0 L
2 h G

(L
3

)
= −

p0 L2

6 h G
.

Therefore, the maximum value of deflection is
p0 L2

6 h G
.
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PROBLEMS

9-1. The profile of a gear tooth shown in
Fig. P9.1(a) is approximated by the

quadratic equation y(x) = −8 k
l2

x (x − l).

y(x)

x

2k

l
0

0

Area, 

(a) The profile of a gear tooth.

A

x

y(x)
2k

l
0

0

(b) The gear tooth area inscribed by six rectangles.

Figure P9.1 Area of a gear tooth for problem P9-1.

(a) Estimate the area A using six rect-
angles of equal width (Δ x = l∕6) as
shown in Fig. P9.1(b).

(b) Calculate the exact area by eval-
uating the definite integral, A =
∫

l
0 y(x)dx.

9-2. The profile of a gear tooth shown in Fig.
P9.2 is approximated by the trigonomet-
ric equation y(x) = k

2

(
1 − cos

(
2𝜋 x

l

))
.

(a) Estimate the area A using eight
rectangles of equal width Δ x = l∕8,

A =
8∑

i=1

y(xi) Δ x.

(b) Calculate the exact area by integra-
tion,

A =
∫

l

0
y(x)dx.

Δx
x

k

l

y

0
0

Area, A

Figure P9.2 Profile of a gear tooth for problem
P9-2.

9-3. The velocity of an object as a function
of time is shown in Fig. P9.3. The accel-
eration is constant during the first 4 s of
motion, so the velocity is a linear func-
tion of time with v(t) = 0 at t = 0 and
v(t) = 80 ft/s at t = 4 s. The velocity is
constant during the last 6 s.
(a) Estimate the total distance covered

as the area, A, under the velocity
curve using five rectangles of equal
width (Δ t = 10∕5 = 2 s).

(b) Now, estimate the total distance
covered using 10 rectangles of equal
width.

(c) Calculate the exact area under the
velocity curve; in other words, find
the total distance traveled by eval-
uating the definite integral Δ x =
∫

10
0 v(t)dt.

(d) Calculate the exact area by adding
the area of the triangle and the area
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of the rectangle formed from the
velocity curve.

t, s
1040

80

v(t), ft/s

Figure P9.3 The velocity of an object.

9-4. A particle is accelerated along a curved
path of length l under the action of an
applied force f (x) as shown in Fig. P9.4.
The total work done on the particle is

W =
∫

l

0
f (x)dx N-m.

If l = 4.0 m, determine the work done
for
(a) f (x) = 8 x3 + 6 x2 + 4 x + 2 N.
(b) f (x) = 4 e−2 x N.
(c) f (x) = 1 − 2 sin2

(
𝜋 x
2

)
N. Hint:

Use a trigonometric identity.

x
f(x)

Figure P9.4 A particle moving along a curved
path.

9-5. A particle is accelerated along a curved
path of length l = 4.0 m under the action
of an applied force f (x) as shown in
Fig. P9.4. The total work done on the
particle is

W =
∫

l

0
f (x)dx N-m.

Determine the work done for
(a) f (x) = 2 x4 + 3 x3 + 4 x − 1 N.
(b) f (x) = e−2 x (1 + e4 x) N.
(c) f (x) = 2 sin

(
𝜋 x
l

)
+ 3 cos

(
𝜋 x
l

)
N.

9-6. When a variable force is applied to an
object, it travels a distance of 5 m. The
total work done on the object is given by

W =
∫

5

0
f (x)dx N-m.

Determine the work done if the force is
given by
(a) f (x) = (x + 1)3 N.
(b) f (x) = 10 sin

(
𝜋

10
x
)

cos
(

𝜋

10
x
)

N.
Hint: Use the double-angle for-
mula.

9-7. A triangular area is bounded by a
straight line in the x–y plane as shown
in Fig. P9.7(a).
(a) Find the equation of the line y(x).
(b) Find the area A by integration, A =

∫

b

0
y(x)dx.

(c) Find the centroid G by integration
with vertical rectangles, as shown in
Fig. P9.7(b); in other words, find

x =
∫ x dA

A
=

∫ x y(x)dx

A

and

y =
∫

y
2

dA

A
=

1
2 ∫

(y(x))2 dx

A
.

(d) Now solve for x as a function of y,
and recalculate the y-coordinate of
the centroid G by integration with
horizontal rectangles, as shown in
Fig. P9.7(c); in other words, find

y =
∫

y dA

A
=

∫
y x(y)dy

A
.
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y, cm

x, cm

ȳ

Gx̄

y(x)
24

18120 6

18120 6

18120 6

0

16

8

24

0

16

8

24

0

16

8

Area, A

(a) Area bounded by a straight line.
y, cm

x, cm

y(x)

y(x)/2

dx

dA = y(x) dx

(b) Vertical rectangles.

y, cm

x, cm

x(y)

x/2
dy

dA = x(y) dy

(c) Horizontal rectangles.

Figure P9.7 Centroid of a triangular cross section.

9-8. An area in the x–y plane is bounded by
the curve y = k xn and the line x = b as
shown in Fig. P9.8.
(a) Determine the area A by integra-

tion with respect to x.

(b) Determine the coordinates of the
centroid G by integration with
respect to x.

(c) Evaluate your answer to part (b) for
the case n = 1.

x
0 b

y = kxn

G

Area, A 

y

kbn

Figure P9.8 Area bounded by a curved surface.

9-9. The tailfin of a cruise missile has a
cross-sectional area as shown in Fig.
P9.9.

y, ft

16 

12 

8 

4 

0 4 8 x, ft

Figure P9.9 Tailfin of a cruise missile.

(a) Determine the equation of the line
y(x).

(b) Determine the area of the tailfin by
integration with respect to x.

(c) Determine the x-coordinate of the
centroid by integration with respect
to x.
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(d) Determine the y-coordinate of the
centroid by integration with respect
to x.

9-10. The geometry of a cooling fin is defined
by the shaded area that is bounded by
the parabola y(x) = −x2 + 16, as illus-
trated in Fig. P9.10.

h

y(x) =  − x2  + 16

x, in.

y, in.

0
0

b

Figure P9.10 Geometry of a cooling fin.

(a) Given the above equation for y(x),
determine the height h and width b
of the fin.

(b) Determine the area of the cool-
ing fin by integration with respect
to x.

(c) Determine the x-coordinate of the
centroid by integration with respect
to x.

(d) Determine the y-coordinate of the
centroid by integration with respect
to x.

9-11. The vane on a rotating compressor
blade has a projected cross-sectional
area as shown in P9.11. If y(x) = 0.4x2 +
5 and h2 = 15 in.,
(a) Determine the values of h1 and b.
(b) Determine the area of the vane by

integration with respect to x.
(c) Determine the x-coordinate of the

centroid by integration with respect
to x.

(d) Determine the y-coordinate of the
centroid by integration with respect
to x.

y, in.

h2

y(x) 

h1

b
x, in.

Figure P9.11 Projected area of a vane on a rotating
compressor blade.

9-12. Repeat problem P9-10 if the shaded
area of the cooling fin is y(x) = 9 − x2.

9-13. The profile of an experimental stealth
drone is divided into two sections as
shown in Fig. P9.13. The leading edge
profile is given by y(x) = x − 0.2x2 while
the trailing edge profile is linear.
(a) Give an educated estimate of the

leading-edge centroidal coordi-
nates (x1, y1).

(b) Determine the area A1 of the
leading-edge section using integra-
tion with respect to x.

(c) Determine the x-coordinate (x1) of
the centroid for the leading-edge
section using integration with
respect to x.

(d) Determine the y-coordinate (y1) of
the centroid for the leading-edge
section using integration with
respect to x.

(e) The coordinates of the overall
drone centroid can be found by

xdrone =
x1A1+x2A2

A1+A2

ydrone =
y1A1+y2A2

A1+A2

Substitute your results from parts
(a)–(c), along with the values A2 =
3.75 m2, x2 = 5 m, and y2 = 0.4167 m
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to determine the centroidal coor-
dinates (x, y) for the entire drone
profile.

(x1, y1)
(x2, y2)

y, in.

y(x)
1.25

A1
A2

Leading edge Trailing edge

3
x, in.

Figure P9.13 Two-section profile of an
experimental stealth drone.

9-14. The cross section of an airfoil is
described by the shaded area that is
bounded by a cubic equation y(x) =
−x3 + 9 x as shown in Fig. P9.14.
(a) Given the above equation for y(x),

determine the height h and width b
of the airfoil.

(b) Determine the area of the airfoil by
integration with respect to x.

(c) Determine the x-coordinate of the
centroid by integration with respect
to x.

(d) Determine the y-coordinate of the
centroid by integration with respect
to x.

b

h

y(x) =  − x3 + 9x 

y, cm

x, cm

Figure P9.14 Cross section of an airfoil.

9-15. The blade profile y(x) of an industrial
cutting blade for plastic tubing shown
in Fig. P9.15 is a sixth-order polynomial
y(x) = x(8 − x5) m.
(a) Determine the height h and width b

of the blade.
(b) Determine the area of the blade by

integration with respect to x.

b

h

y(x) 

y, in.

x, in.

Figure P9.15 Profile of industrial cutting blade.

(c) Determine the x-coordinate of the
centroid by integration with respect
to x.

(d) Determine the y-coordinate of the
centroid by integration with respect
to x.

9-16. The geometry of a gear tooth is approx-
imated by the following quadratic
equation as shown in Fig. P9.16.

y, mm

x, mm

b

x1 x2

h

y(x) = − 2x2 + 12x − 16

Figure P9.16 Geometry of a gear tooth.
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(a) Determine the height h of the tooth
(i.e., the maximum value of y(x)).

(b) Determine the coordinates x1 and
x2 where y(x) = 0, and calculate the
width b.

(c) Determine the area of the gear
tooth by integration with respect
to x.

(d) Determine the x-coordinate of the
centroid by integration with respect
to x.

(e) Determine the y-coordinate of the
centroid by integration with respect
to x.

9-17. A cubic distributed load w(x) is applied
to a simply supported beam as shown in
Fig. P9.17, where

w(x) =
512 wo

3L3
x3 −

320 wo

L2
x2

+
168 wo

L
x + 10 wo

(a) Determine the magnitude of the
distributed load at the endpoints
of the beam (i.e., where x = 0 and
x = L).

(b) Determine the statically equivalent
load R, which is given by R =
∫

L
0 w(x)dx.

(c) Determine the location x of the
statically equivalent load R, which
is given by x = 1

R
∫

L
0 xw(x)dx.

y

w(x)

x

L

Figure P9.17 Simply supported beam with cubic
loading.

9-18. A simply supported beam is subjected
to a quadratic distributed load as shown
in Fig. P9.18.

y

x

l

w0

w0w(x) =  − x(x − 2l )
l2

Figure P9.18 Simply supported beam subjected to
a quadratic distributed load.

(a) Determine the total resultant force,

R =
∫

l

0
w(x)dx.

(b) Determine the x-location of the
resultant R; in other words, deter-
mine the centroid of the area under
the distributed load

x =
∫

l

0
x w(x)dx

R
.

9-19. Determine the velocity v(t) and the
position y(t) of a vehicle that starts from
rest at position y(0) = 0 and is subjected
to the following accelerations:
(a) a(t) = 20 t3 + 15 t2 + 10 t + 5 m/s2.
(b) a(t) = 2sin(4 𝜋 t)cos(4 𝜋 t) m/s2.

Hint: Use a trigonometric identity.

9-20. A particle starts from rest at position
x(0) = 0. Find the velocity v(t) and posi-
tion x(t) if the particle is subjected to the
following accelerations:
(a) a(t) = 6 t3 − 4 t2 + 7 t − 8 m/s2.
(b) a(t) = 5 e−5 t + 𝜋

4
cos (𝜋

4
t) m/s2.
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9-21. The velocity profile of a vehicle is given
in Fig. P9.21. If the initial position of the
vehicle is x(0) = 18 m, use your knowl-
edge of both derivatives and integrals
to plot the position x(t). Clearly indicate
the maximum, minimum and final posi-
tions on your graph.

v(t), m/s

12

6

0 3 6

−6

9 12
t, s

−12

x(t)

Figure P9.21 Velocity profile of a vehicle.

9-22. The acceleration of a vehicle is given
in Fig. P9.22. If the automobile starts
from rest at position x(0) = 0, sketch
the velocity v(t) and position x(t) of the
automobile.

x(t)

2
0

10

−10

t, s
41 3

−20

20

a(t), m/s2

Figure P9.22 The acceleration of an automobile.

9-23. A vehicle starting from rest at a position
x(0) = 0 is subjected to the acceleration
given in Fig. P9.23.
(a) Knowing that a(t) = dv

dt
and that the

initial velocity is v(0) = −150 ft/s,
sketch the velocity of the vehicle
over the given time interval.

(b) Knowing that v(t) = dx
dt

and that the
initial position is x(0) = 0 ft, sketch
the position of the vehicle over the
given time interval. Clearly label
the local maxima/minima and final
values on your graph.

a(t), ft/s2

60

30

0 

−30

5 10 15 20 25 t, s

−60

x(t)

Figure P9.23 Vehicle subjected to a given
acceleration for problem 9-23.

9-24. A vehicle starting from rest at a position
x(0) = 0 is subjected to the acceleration
given in Fig. P9.24.
(a) Plot the velocity v(t) of the vehicle,

and clearly indicate both its maxi-
mum and final values.

(b) Given your result of part (a), plot
the position x(t) of the vehicle, and
clearly indicate both its maximum
and final values.
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x(t)

4
0

5

−5

−10

10

82 6
t, s

a(t), m/s2

Figure P9.24 Vehicle subjected to a given
acceleration for problem 9-24.

9-25. The current flowing through a capaci-
tor is given in Fig. P9.25. Knowing that
i(t) = dq

dt
and that q(0) = 0.2 Coulombs,

use your knowledge of derivatives
and/or integrals to plot the charge q(t).

i(t), mA

200

100

0

−100

−200

2 4 6 8 t, s

−

i(t) C vo (t)↑

+

Figure P9.25 Current flowing through a capacitor
for problem 9-25.

9-26. The RLC circuit shown in Fig. P9.26 has
R = 10 Ω, L = 2 H, and C = 0.5 F. If the
current i(t) flowing through the circuit
is i(t) = 10 sin (240𝜋 t) A, find the volt-
age v(t) supplied by the voltage source,
which is given by

v(t) = i R + L
di(t)
dt

+ 1
C ∫

t

0
i(t)dt

v(t)

i(t)

R = 10 Ω 

L = 2 H

C = 0.5 F

+
−

Figure P9.26 A series RLC circuit.

9-27. An OP-AMP circuit shown in Fig. P9.27
has R = 10 kΩ and C = 10𝜇F. The rela-
tionship between the input and output
of the OP-AMP is given by

vin = −0.1
dvo(t)

dt
.

vo

C

R + vcc
−
+ +

vin − vcc

−

Figure P9.27 OP-AMP circuit for problem P9-27.

(a) Suppose that the initial output volt-
age of the OP-AMP is zero. If an
input voltage vin = −10 sin(100 t) V
is applied to the OP-AMP circuit,
integrate both sides of the equation
given above to determine the volt-
age vo(t). Also, sketch the output
voltage vo(t) for one cycle.

(b) Suppose that the instantaneous
power absorbed by the capacitor
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is p(t) = sin (100 t) − 0.5 sin (200 t)
mW, and that the initial stored
energy is w(0) = 0. Knowing that

p(t) = dw(t)
dt

, integrate both sides of
the equation to determine the total
stored energy w(t).

9-28. Repeat problem P9-27 if vin = 10 e−10 t.
Also, in part (b), assume that the power
p(t) = 10(e−10 t − e−20 t) mW.

9-29. The integrating OP-AMP shown in Fig.
P9.27 has components chosen such that
RC = 2.5 s. The output voltage vo(t) is
related to the input voltage vin(t) as
dvo(t)

dt
= − 1

RC
vin(t).

(a) If vin(t) = −75e−10 t volts, integrate
both sides to determine the out-
put voltage vo(t). Assume that the
initial voltage across the capacitor
is 0 V.

(b) Sketch output voltage vo(t) from
0 ≤ t ≤ 0.5 s.

(c) Suppose that p(t) = 9 e−10 t (1 −
e−10t) mW. Determine the total
stored energy W(t) = ∫

t
0 p(t)dt

assuming that the initial energy is
zero.

9-30. An input voltage vin = 5 cos(20 t) V is
applied to an OP-AMP circuit as shown
in Fig. P9.30. The relationship between
the input and output is given by

vo = −
(

2 vin + 5
∫

t

0
vin(t)

)
dt.

Determine the voltage vo(t). Also,
sketch the output voltage vo(t) for one
cycle.

vo

+

−

+ vcc

− vccvin
= 5 cos (20t)

C = 20   F R =  20 kΩ

R = 10 kΩ

+
−

−
+

μ

Figure P9.30 An OP-AMP circuit for problem
P9-30.

9-31. A current i(t) = 50e−5t mA is applied to
a capacitor C = 1000 𝜇F shown in Fig.
P9.31.

−

i(t) C vo (t)↑

+

Figure P9.31 A current applied to a capacitor.

(a) Knowing that i(t) = C dv
dt

and that
the initial voltage is v(0) = 50 V,
integrate both sides of the equation
to determine the output voltage
v(t).

(b) Evaluate the voltage v(t) for
t = 0.25 s, t = 0.50 s, and t = 0.75 s
and use your results to plot v(t) for
0 ≤ t ≤ 1 s.

(c) Suppose the voltage across the
capacitor is v(t) = 10(6 − e−5t) volts.
Compute the power p(t) = v(t)i(t).

(d) Suppose that the stored power is
p(t) = 3e−5t − 0.5e−10t W. Knowing
that p(t) = dW

dt
, integrate both sides

of the equation and calculate the
stored energy. Assume the initial
stored energy is zero (i.e., W(0) =
0 J).

9-32. For the circuit shown in Fig. P9.32, the
voltage is v(t) = 5 cos(5 t) volts, the cur-
rent is i(t) = 10 sin(5 t) A, and the total
power is p(t) = 25 sin(10 t) W. If the ini-
tial stored energy is w(0) = 0 J, deter-
mine the total stored energy, w(t) =
w(0) + ∫

t
0 p(t)dt, and plot one cycle of

w(t).

L = 100 mH

i(t)

v(t) +
−

Figure P9.32 A voltage applied to an inductor.
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9-33. The sawtooth current i(t) given in
Fig. P9.33 is applied to a 250 𝜇F capac-
itor as shown in Fig. P9.31. Sketch the
voltage v(t) across the capacitor know-
ing that i(t) = C dv(t)

dt
or v(t) = v(0) +

1
C
∫

t
0 i(t)dt. Assume that the capacitor is

completely discharged at t = 0 (i.e., v(0)
is 0 V).

i(t), mA

5

0 0   1 2   3 4   5

− 5

t, ms

Figure P9.33 Sawtooth current applied to a
capacitor in problem P9-33.

9-34. The sawtooth voltage v(t) shown in Fig.
P9.34 is applied across a 100 mH induc-
tor as shown in Fig. P9.32. Sketch the
current i(t) passing through the induc-
tor knowing that v(t) = L di(t)

dt
or i(t) =

i(0) + 1
L
∫

t
0 v(t)dt. Assume that the cur-

rent flowing through the inductor at t =
0 is zero (i.e., i(0) = 0 A).

v(t), V

10

0 0   1 2   3 4   5

− 10

t, ms

Figure P9.34 Sawtooth voltage applied across an
inductor.

9-35. A current i(t) given in Fig. P9.35 is
applied to a capacitor of C = 96 𝜇F as
shown in Fig. P9.31.

i(t), mA

12

6

0

−6

−12

100 200 300 400
t, ms

Figure P9.35 Current applied to a capacitor for
problem P9-35.

(a) Knowing that i(t) = C dv(t)
dt

, sketch
the voltage across the capacitor v(t).
Note that the time is measured in
milliseconds and the initial voltage
is zero (i.e., v(0) = 0.0 V).

(b) Given your results of part (a),
sketch the absorbed power p(t) =
v(t)i(t).

9-36. A biomedical engineer is evaluating an
energy-absorbing aviation seat on a ver-
tical deceleration tower, as shown in Fig.
P9.36. The acceleration profile of the
drop cage is given by

a(t) = 400 sin(50𝜋 t) m/s2.

(a) Knowing that v(t) = v(0) + ∫
t

0 a(t)dt,
find and plot the velocity v(t) of the
drop cage. Assume the drop cage
starts from rest at t = 0 s.

(b) What is the impact velocity vimpact
of the drop cage if it takes 20 ms to
hit the ground?

(c) The total impulse I is equal to the
change in momentum, I = Δp =
pf − pi = mvimpact − mv0, where m
is the mass of the system, vimpact is
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the final velocity, vo is the initial
velocity, p is the momentum, and
I is the impulse. Find the total
impulse after 20 ms. Assume that
the total mass of the drop cage, seat,
and crash test dummy is 1200 kg.

Figure P9.36 Energy-absorbing aviation seat.

9-37. A biomechanical load simulator applies
a sinusoidal force F(t) = 100 sin

(
𝜋

2
t
)

N
to a mass of m = 150 kg, as shown in
Fig. P9.37.
(a) Knowing that F(t) = m dv

dt
, integrate

both sides of the equation to deter-
mine the velocity v(t) of the mass
m. You may assume that the initial
velocity is v(0) = 0 m/s.

(b) The motor controller for the
load simulator applies a current
of i(t) = 10 cos

(
𝜋

2
t
)

amps. The
corresponding voltage is v(t) =
220 sin

(
𝜋

2
t
)

volts. Compute the
power p(t) = v(t)i(t) and find its
maximum value. The following
trig identity may come in handy:
sin(2𝜃) = 2 sin(𝜃) cos(𝜃).

(c) Suppose the total power is p(t) =
1100 sin(𝜋t) W. Compute the stored
energy w(t) = ∫

t
0 p(t)dt, and find its

maximum value if the initial energy
stored is zero.

(d) Plot one cycle of the stored energy
and determine the time when it first
reaches its maximum value.

F(t)

Figure P9.37 Sinusoidal force applied by a
biomechanical load simulator.

9-38. A civil engineer designs a building
overhang to withstand a triangular
snow loading per unit length p(x) =
po

(
1 − x

L

)
, as shown in Fig. P9.38.

(a) Compute the resulting force V =
∫

L
0 p(x)dx.

(b) Compute the corresponding
moment M = ∫

L
0 x p(x)dx.

(c) Locate the position of the centroid

x =
∫

L
o x p(x)dx

∫
L

0 p(x)dx
= M

V
.

p(x)

x

V

M

po

L

V

Figure P9.38 Triangular snow loading on a
building overhang.

9-39. A simply supported beam is sub-
jected to a sinusoidal load w(x) =
wo sin

(
𝜋 x
L

)
, as shown in Figure P9.39.

The internal shear based on this load is
V(x) = woL

𝜋
cos

(
𝜋x
L

)
.
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y

w(x)

x

L

Figure P9.39 Simply supported beam subject to a
sinusoidal distributed load.

(a) Given that V(x) = dM
dx

, integrate
both sides with respect to x to deter-
mine the internal moment M(x)
along the beam. Note that M(0) = 0
for a simply supported beam.

(b) Given that M(x) = EI d𝜃
dx

, integrate
both sides with respect to x and
determine the angle 𝜃(x) along the
beam if the angle at the origin is

𝜃(0) = −
woL3

𝜋3EI
.

9-40. A biomedical engineer measures the
velocity profiles of a belted and
unbelted occupant during a 45 mph
(≈20 m/s) frontal collision, as shown
in Fig. P9.40.
(a) Knowing that x(t) = x(o) +

∫
t

0 v(t)dt, find and plot the displace-
ment x(t) of the belted occupant for
time 0 to 40 ms. Assume that the
initial displacement at t = 0 is 0 m
(i.e., x(0) = 0 m).

Belted occupant:

+ X

Unbelted occupant:

+ X

20 cos(62.5   t)

20 cos(12.5   t)

0
0

0
0

20

v(t), m/s

0.04

0.04

0.008
t, s

t, s

v(t), m/s

20

π

π

Figure P9.40 Velocities of the belted and unbelted
occupants during frontal collision.

(b) Find and plot the displacement x(t)
of the unbelted occupant for time 0
to 40 ms. Assume x(0) = 0 m.

(c) Based on the results of parts (a)
and (b), how much farther did the
unbelted occupant travel compared
to the belted occupant?
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CHAPTER
10

Differential
Equations
in Engineering

The objective of this chapter is to familiarize engineering students with the solution
of differential equations (DEQ) as needed for first- and second-year engineering
courses such as physics, circuits, and dynamics. A differential equation relates
an output variable and its derivatives to an input variable or forcing function.
There are several different types of differential equations. This chapter discusses
first- and second-order linear differential equations with constant coefficients.
These are the most common type of differential equations found in undergraduate
engineering classes.

10.1 INTRODUCTION: THE LEAKING BUCKET

Consider a bucket of cross-sectional area A being filled with water at a volume flow
rate Qin, as shown in Fig. 10.1. If h(t) is the height and V = A h(t) is the volume of
water in the bucket, the rate of change of the volume is given by

dV
dt

= A
dh(t)

dt
. (10.1)

Suppose the bucket has a small hole on the side through which water is leaking at
a rate

Qout = K h(t), (10.2)

Qin

Area, A

h(t) Volume, V 

K
Qout = K h(t)

Figure 10.1 A leaking bucket with a small hole.

354
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where K is a constant. In reality, Qout is not a linear function of h(t), but it is assumed
here for simplicity. The constant K is an engineering design parameter that depends
on the size and shape of the hole, as well as the properties of the fluid.

By conservation of volume, the volume of water in the bucket is given by

dV
dt

= Qin − Qout. (10.3)

Substituting equations (10.1) and (10.2) into equation (10.3) gives

A
dh(t)

dt
= Qin − K h(t)

or
A

dh(t)
dt

+ K h(t) = Qin. (10.4)

Equation (10.4) is a first-order linear differential equation with constant coefficients.
The objective is to solve the differential equation; in other words, determine the
height h(t) of the water when an input Qin and the initial condition h(0) are given.
Before presenting the solution of this equation, a general discussion of differential
equations and the solution of linear differential equations with constant coefficients
is given.

10.2 DIFFERENTIAL EQUATIONS

An nth-order linear differential equation relating an output variable y(t) and its
derivatives to some input function f (t) can be written as

An
dny(t)

dtn
+ An−1

dn−1y(t)
dtn−1

+ . . . + A1
dy(t)

dt
+ A0 y(t) = f (t), (10.5)

where the coefficients An, An−1, . . ., A0 can be constants, functions of y, or function
of t. The input function f (t) (also called the forcing function) represents everything
on the right-hand side (RHS) of the differential equation. The solution of the differ-
ential equation is the output variable, y(t).

For a second-order system involving position y(t), velocity dy(t)
dt

, and accelera-

tion d2y(t)
dt2

, equation (10.5) takes the form

A2
d2y(t)

dt2
+ A1

dy(t)
dt

+ A0 y(t) = f (t). (10.6)

Note that engineers often use a dot notation when referring to derivatives with
respect to time, for example, ẏ(t) = dy(t)

dt
, ÿ(t) = d2y(t)

dt2
, and so on. In this case,

equation (10.6) can be written as

A2 ÿ(t) + A1 ẏ(t) + A0 y(t) = f (t). (10.7)

In many engineering applications, the coefficients An, An−1, . . ., A0 are constants (not
functions of y or t). In this case, the differential equation given by equation (10.5) is
known as a linear differential equation with constant coefficients. For example, in
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the case of a spring–mass system subjected to an applied force f (t), equation (10.8)
is a second-order differential equation given by

m ÿ(t) + k y(t) = f (t), (10.8)

where m is the mass and k is the spring constant. If the coefficients An, An−1, . . ., A0
are functions of y or t, exact solutions can be difficult to obtain. In many cases, exact
solutions do not exist, and the solution y(t) must be obtained numerically (e.g., using
the differential equation solvers in MATLAB). However, in the case of constant
coefficients, the solution y(t) can be obtained by following the step-by-step procedure
outlined below.

10.3 SOLUTION OF LINEAR DEQ WITH CONSTANT
COEFFICIENTS

In general, the total solution for the output variable y(t) is the sum of two solutions:
the transient solution and the steady-state solution.

1. Transient Solution, ytran(t) (also called the Homogeneous or Complementary
Solution): The transient solution is obtained using the following steps:

a. Set the forcing function f (t) = 0. This makes the RHS of equation (10.5) zero,
for example

An
dny(t)

dtn
+ An−1

dn−1y(t)
dtn−1

+ · · · + A1
dy(t)

dt
+ A0 y(t) = 0. (10.9)

b. Assume a transient solution of the form y(t) = c est, and substitute it
into (10.9). Note that dy(t)

dt
= c s est, d2y(t)

dt2
= c s2 est, and so on, so that each

term will contain c est. Since the RHS of equation (10.9) is zero, canceling
the c est will result in a polynomial in s:

An sn + An−1 sn−1 + . . . + A1 s + A0 = 0. (10.10)

c. Solve for the roots of the above equation, which is known as the character-
istic equation. The roots are the n values of s that make the characteristic
equation equal to zero. Call these values s1, s2, . . ., sn.

d. For the case of n distinct roots, the transient solution of the differential
equation has the general form

ytran(t) = c1 es1 t + c2 es2 t + . . . + cn esn t

where the constants c1, c2, . . ., cn are determined later from the initial con-
ditions of the system.

e. For the special case of repeated roots (i.e., two of the roots are the same),
the solution can be made general by multiplying one of the roots by t. For
example, for a second-order system with s1 = s2 = s, the transient solution is

ytran(t) = c1 es t + c2 t es t. (10.11)
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2. Steady-State Solution, yss(t) (also called the Particular Solution):
The steady-state solution can be found using the Method of Undetermined Coef-
ficients:

a. Assume (guess) the form of the steady-state solution, yss. This will usually
have the same general form as the forcing function and its derivatives but
will contain unknown constants (i.e., undetermined coefficients). Example
guesses are shown in Table 10.1, where K, A, B, and C are constants.

TABLE 10.1 Assumed solutions yss(t) for common
input functions f (t).

If input f (t) is Assume yss(t)

K A

K t A t + B

K t2 A t2 + B t + C

K sin𝜔 t or K cos𝜔 t A sin𝜔 t + B cos𝜔 t

b. Substitute the assumed steady-state solution yss(t) and its derivatives into
the original differential equation.

c. Solve for the unknown (undetermined) coefficients (A, B, C, etc.). This can
usually be done by equating the coefficients of like terms on the left- and
right-hand sides of equations.

3. Find the total solution, y(t): The total solution is just the sum of the transient and
steady-state solutions

y(t) = ytran(t) + yss.

4. Apply the initial conditions on y(t) and its derivatives. A differential equation of
order n must have exactly n initial conditions, which will result in an n × n system
of equations for n constants c1, c2, . . ., cn.

10.4 FIRST-ORDER DIFFERENTIAL EQUATIONS

This section illustrates the application of the method described in Section 10.3 to a
variety of first-order differential equations in engineering.

Example
10-1

The Leaking Bucket Problem

Consider again the leaking bucket of Section 10.1, which satisfies the following
first-order differential equation:

A
dh(t)

dt
+ K h(t) = Qin. (10.12)

Find the total solution of h(t) if the input Qin = B is a constant. Assume that the
initial height of the water is zero (i.e., h(0) = 0).
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Solution (a) Transient (Complementary or Homogeneous) Solution: Since the transient
solution is the zero-input solution, the input on the RHS of equation (10.12) is
set to zero. Thus, the homogeneous differential equation of the leaking bucket
is given by

A
dh(t)

dt
+ K h(t) = 0. (10.13)

Assume that the transient solution of the height htran(t) is of the form given by
equation (10.14):

htran(t) = c est. (10.14)

The constant s is determined by substituting htran(t) and its derivative into
the homogeneous differential equation (10.13). The derivative of htran(t) is
given by

d htran(t)
dt

= d
dt

(c es t)

= c s es t. (10.15)

Substituting equations (10.14) and (10.15) in equation (10.13) yields

A(c s es t) + K(c es t) = 0.

Factoring out c est gives
c es t(As + K) = 0.

Since c est ≠ 0, it follows that

A s + K = 0. (10.16)

Equation (10.16) is the characteristic equation for the leaking bucket. Solving
equation (10.16) for s gives

s = −K
A
. (10.17)

Substituting the above value of s into equation (10.14), the transient solution
for the leaking bucket is given by

htran(t) = c e−
K
A

t (10.18)

The constant c depends on the initial height of the water and cannot be deter-
mined until the initial condition is applied to the total solution in step 4.

(b) Steady-State (Particular) Solution: The steady-state solution of a differential
equation is the solution to a particular input. Since the given input is Qin = B,
the differential equation (10.12) can be written as

A
dh(t)

dt
+ K h(t) = B. (10.19)

According to the method of undetermined coefficients (Table 10.1), the
steady-state solution will have the same general form as the input and its
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derivatives. Since the input in this example is constant, the steady-state
solution is assumed constant to be

hss(t) = E, (10.20)

where E is a constant. The value of E can be determined by substituting hss(t)
and its derivative into equation (10.19). The derivative of hss(t) is

d hss(t)
dt

= d
dt

(E)

= 0. (10.21)

Substituting equations (10.20) and (10.21) into equation (10.19) gives

A(0) + K E = B.

Solving for E gives

E = B
K
.

Therefore, the steady-state solution of the leaking bucket subjected to a con-
stant input Qin = B is given by

hss(t) =
B
K
. (10.22)

(c) Total Solution: The total solution for h(t) is obtained by the adding the tran-
sient and the steady-state solutions as

h(t) = c e−
K
A

t + B
K
. (10.23)

(d) Initial Conditions: The constant c can now be obtained by substituting the
initial condition h(0) = 0 into equation (10.23) as

h(0) = c e−
K
A
(0) + B

K
= 0

or
c (1) + B

K
= 0,

which gives

c = −B
K
. (10.24)

Substituting the above value of c into equation (10.23) yields

h(t) = −B
K

e−
K
A

t + B
K

or
h(t) = B

K

(
1 − e−

K
A

t
)
. (10.25)
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Note that as t → ∞, h(t) → B
K

; in other words, the total solution reaches the
steady-state solution. Thus, at steady state, the height h(t) reaches a constant
value of B

K
. Physically speaking, the bucket continues to fill until the pressure

is great enough that Qout = Qin (i.e., dh(t)
dt

= 0). That value depends only on
B
K
= Qin

K
. At time t = A

K
s, the bucket fills to a height of

h
(A

K

)
= B

K

(
1 − e

−K
A

(
A
K

))

= B
K

(1 − e−1)

= B
K
(1 − 0.368)

or

h
(A

K

)
= 0.632 B

K
.

At time t = 5 A∕K s, the bucket fills to a height of

h
(

5 A
K

)
= B

K

(
1 − e

−K
A

(
5A
K

))

= B
K

(1 − e−5)

= B
K
(1 − 0.0067)

or

h
(

5 A
K

)
= 0.9933 B

K
.

Thus, it takes t = A∕K s for the height to reach 63.2% of the steady-state value
and t = 5A∕K s to reach 99.33% of the steady-state value. The time t = A∕K
s is known as the time constant of the response and is usually denoted by the
Greek letter 𝜏. The response of a first-order system (for example, the leaking
bucket) can generally be written as

y(t) = steady-state solution
(

1 − e−
t
𝜏

)
. (10.26)

The plot of the height h(t) for input Qin = B is shown in Fig. 10.2. It can be seen
from this figure that after t = 5𝜏 s the water level has, for all practical purpose,
reached its steady-state value.
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h(t)

B
K

B
K

A
K

A
K

0.632 

0
0 5 

t, s

Figure 10.2 Solution for h(t) for Qin = B and h(0) = 0.

Example
10-2

Leaking Bucket with No Input

Suppose now that Qin = 0, and that the initial height of the water is h0 (Fig. 10.3).
The height h(t) of the water is governed by the first-order differential equation

A
dh(t)

dt
+ K h(t) = 0. (10.27)

Determine the total solution for h(t). Also, find the time it takes for the water to
completely leak out of the bucket.

Qin = 0

Area, A 

h(0) = h0 Volume, V 

K
Qout = K h(t)

Figure 10.3 Leaking bucket with no input for example 10-2.
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Solution (a) Transient Solution: The transient solution is identical to that of the previous
example and is given by

htran(t) = c1 e−
K
A

t
.

(b) Steady-State Solution: Since the RHS of the differential equation (10.27) is
zero (i.e., the input is zero), the steady-state solution is also zero:

hss(t) = 0.

(c) Total Solution: The total solution for the height h(t) is given by

h(t) = htran(t) + hss(t)

= c1 e−
K
A

t + 0

or
h(t) = c1 e−

K
A

t
. (10.28)

(d) Initial Conditions: The constant c1 is determined by substituting the initial
height h(0) = h0 into equation (10.28) as

h(0) = c1 e−
K
A
(0) = h0

or
c1 (1) = h0,

which gives
c1 = h0.

Thus, the total solution for h(t) is

h(t) = h0 e−
K
A

t
. (10.29)

The height h(t) given in equation (10.29) is a decaying exponential function
with time constant 𝜏 = A∕K. At time t = A∕K s, the bucket empties to a
height of

h
(A

K

)
= h0 e

−K
A

(
A
K

)

= h0 e−1

or
h
(A

K

)
= 0.368 h0.

At time t = 5A
K

s, the bucket empties to a height of

h
(

5 A
K

)
= h0 e

−K
A

(
5 A
K

)

= h0 e−5

= 0.0067 h0
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or

h
(

5 A
K

)
≈ 0.

The plot of the height is shown in Fig. 10.4. It can be seen from this figure that
the height starts from the initial value h0 and decays to 36.8% of the initial
value in one time constant 𝜏 = A∕K, and is approximately zero after five time
constants.

h(t)

h0

0.368 h0

0
0 A

K
A
K

t, s
5 

Figure 10.4 Solution for h(t) with Qin = 0 and h(0) = h0.

Example
10-3

Voltage Applied to an RC Circuit

Find the voltage v(t) across the capacitor if a constant voltage source vs(t) = vs is
applied to the RC circuit shown in Fig. 10.5. Assume that the capacitor is initially
completely discharged (i.e., v(0) = 0).

+

R

+ vR(t) − i(t)

vs(t) −

+
C v(t)

−

Figure 10.5 RC circuit with constant input for example 10-3.



Trim Size: 8in x 10in Rattan2e c10.tex V1 - 03/15/2021 3:40pm Page 364�

� �

�

364 Chapter 10 Differential Equations in Engineering

The governing equation for v(t) follows from Kirchhoff’s voltage law (KVL),
which gives

vR(t) + v(t) = vs(t). (10.30)

From Ohm’s law, the voltage across the resistor is given by vR(t) = R i(t). Since
the resistor and capacitor are connected in series, the same current flows through
the resistor and capacitor, i(t) = C dv(t)

dt
. Therefore, vR(t) = R C dv(t)

dt
, and equation

(10.30) can be written as

R C
dv(t)

dt
+ v(t) = vs(t). (10.31)

Equation (10.31) is a first-order differential equation with constant coefficients.
This equation can also be written as

R C v̇(t) + v(t) = vs(t), (10.32)

where v̇(t) = dv(t)
dt

. The goal is to solve the voltage v(t) if vs(t) = vs is constant and
v(0) = 0.

Solution (a) Transient Solution: The transient solution is obtained by setting the RHS of
the differential equation equal to zero as

R C v̇(t) + v(t) = 0, (10.33)

and assuming a solution of the form

vtran(t) = c est. (10.34)

The constant s is determined by substituting vtran(t) and its derivative into
equation (10.33). The derivative of vtran(t) is given by

d vtran(t)
dt

= d
dt

(c es t) = c s es t. (10.35)

Substituting equations (10.34) and (10.35) in equation (10.33) yields

RC(c s es t) + (c es t) = 0.

Factoring out c es t gives
es t(RCs + 1) = 0.

It follows that
RC s + 1 = 0, (10.36)

which gives

s = − 1
RC

. (10.37)

Substituting the above value of s into equation (10.34) gives

vtran(t) = c e−
1

RC
t
. (10.38)

The constant c depends on the initial voltage across the capacitor, which is
applied to the total solution in step 4.
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(b) Steady-State Solution: For vs(t) = vs,

RC v̇(t) + v(t) = vs. (10.39)

Since the input to the RC circuit is constant, the steady-state solution of the
output voltage v(t) is assumed to be

vss(t) = E, (10.40)

where E is a constant. The value of E can be determined by substituting vss(t)
and its derivative in equation (10.39), which gives

RC(0) + E = vs.

Solving for E yields
E = vs.

Thus, the steady-state solution for the output voltage is

vss(t) = vs. (10.41)

(c) Total Solution: The total solution for v(t) is obtained by the adding the tran-
sient and the steady-state solutions given by equations (10.38) and (10.41) as

v(t) = c e−
1

RC
t + vs. (10.42)

(d) Initial Conditions: The constant c1 can now be obtained by applying the initial
condition as

v(0) = c e−
1

RC
(0) + vs = 0

or
c (1) + vs = 0.

Solving for c gives
c = −vs. (10.43)

Substituting the above value of c into equation (10.42) yields

v(t) = −vs e−
1

RC
t + vs

or
v(t) = vs

(
1 − e−

1
RC

t
)
. (10.44)

Note that as t → ∞, v(t) → vs (i.e., the total solution reaches the steady-state
solution). At steady state, the capacitor is fully charged to a voltage equal to
the input voltage. While the capacitor is charging, the voltage across the capac-
itor at time t = RC s is given by

v(RC) = vs

(
1 − e−

1
RC

(RC)
)

= vs (1 − e−1)

= vs (1 − 0.368)



Trim Size: 8in x 10in Rattan2e c10.tex V1 - 03/15/2021 3:40pm Page 366�

� �

�

366 Chapter 10 Differential Equations in Engineering

or
v = 0.632 vs.

Also, at time t = 5 RC s, the voltage across the capacitor is given by

v(5 RC) = vs

(
1 − e−

1
RC

(5 RC)
)

= vs (1 − e−5)

= vs (1 − 0.0067)

= 0.9933 vs

or
v ≈ vs.

Thus, it takes t = RC s for the voltage to reach 63.2% of the input voltage and
at t = 5 RC s, the voltage reaches 99.33% of the input value. The time t = 𝜏 =
RC s is the time constant of the RC circuit, which is a measure of the time
required for the capacitor to fully charge. Typically, to reduce the charge time
of the capacitor, the resistance value of the resistor is reduced. The plot of the
voltage v(t) is shown in Fig. 10.6. It can be seen from this figure that it takes
the response approximately 5𝜏 to reach the steady state, which is identical to
the result obtained for the leaking bucket with constant Qin.

v(t), V

0.632 vs 

0
0 RC 5RC

t, s

vs

Figure 10.6 The voltage across the capacitor to a constant voltage in an RC circuit of
example 10-3.
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Example
10-4

For the circuit shown in Fig. 10.7, the differential equation relating the output v(t)
and input vs(t) is given by

0.5 v̇(t) + v(t) = vs(t). (10.45)

Find the output voltage v(t) across the capacitor if the input voltage vs(t) = 10 V.
Assume that the initial voltage across the capacitor is zero (i.e., v(0) = 0).

−

R = 5 kΩ 

+ vR(t) − i(t)

vs(t)  
+

C = 100 μF
+

v(t)
−

Figure 10.7 RC circuit with input voltage vs(t).

Solution (a) Transient Solution: The transient solution is obtained by setting the RHS of
the differential equation to zero as

0.5 v̇(t) + v(t) = 0, (10.46)

and assuming a solution of the form

vtran(t) = c est. (10.47)

Substituting the transient solution and its derivative into equation (10.46) and
solving for s gives

0.5(c s es t) + (c es t) = 0

c es t(0.5 s + 1) = 0

0.5 s + 1 = 0

s = −2.

Thus, the transient solution of the output voltage is given by

vtran(t) = c e−2 t, (10.48)

where c will be obtained from the initial condition.

(b) Steady-State Solution: Since the input applied to the RC circuit is 10 V,
equation (10.45) can be written as

0.5 v̇(t) + v(t) = 10. (10.49)

Since the input is constant, the steady-state solution of the output voltage v(t)
is assumed to be

vss(t) = E, (10.50)
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where E is a constant. The value of E can be determined by substituting vss(t)
and its derivative into equation (10.49) as

0.5 (0) + E = 10,

which gives
E = 10 V.

Thus, the steady-state solution of the output voltage is given by

vss(t) = 10 V. (10.51)

(c) Total Solution: The total solution for v(t) is obtained by the adding the tran-
sient and steady-state solutions given by equations (10.48) and (10.51) as

v(t) = c e−2 t + 10. (10.52)

(d) Initial Conditions: The constant c can now be obtained by applying the initial
condition (v(0) = 0) as

v(0) = c e−2 (0) + 10 = 0

or
c (1) + 10 = 0.

Solving for c gives
c = −10 V. (10.53)

Substituting the value of c from equation (10.53) into equation (10.52) yields

v(t) = −10 e−2 t + 10

or
v(t) = 10 (1 − e−2 t) V. (10.54)

Since the time constant is 𝜏 = 1/2 = 0.5 s, it takes the capacitor 0.5 s to reach
63.2% of the input voltage and approximately 5(0.5) = 2.5 s to fully charge to
approximately 10 V. The plot of the output voltage v(t) is shown in Fig. 10.8.

v(t), V

10

6.32

0
0 0.5 2.5

t, s

Figure 10.8 The voltage across the capacitor in example 10-4.
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Example
10-5

The differential equation for the capacitive circuit shown in Fig. 10.9 is given by

0.5 v̇(t) + v(t) = 0. (10.55)

Find the output voltage v(t) across the capacitor C as it discharges from an initial
voltage of v(0) = 10 V.

R = 5 kΩ 

+ vR(t)− i(t)

C = 100 μF

v(0) = 10 V

+
v(t)
−

Figure 10.9 Discharging of a capacitor in an RC circuit.

Solution (a) Transient Solution: Since the left-hand side of the governing equation is the
same as that for the previous example, the transient solution of the output
voltage is given by equation (10.48) as

vtran(t) = c e−2 t.

(b) Steady-State Solution: Since there is no input applied to the circuit, the
steady-state value of the output voltage is zero:

vss(t) = 0.

(c) Total Solution: The total solution for v(t) is obtained by the adding the tran-
sient and the steady-state solutions, which gives

v(t) = c e−2 t.

(d) Initial Conditions: The constant c can now be obtained by applying the initial
condition (v(0) = 10 V) as

v(0) = c e−2 (0) = 10,

which gives
c = 10 V.

Thus, the output voltage is given by

v(t) = 10 e−2 t V.

While the capacitor is discharging, the voltage across the capacitor at time
t = 0.5 s (one time constant) is given by

v(0.5) = 10 e−2 (0.5)

= 10 e−1
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or
v = 3.68 V.

Also, at time t = 2.5 s (five time constants), the voltage across the capacitor is
given by

v(2.5) = 10 e−2 (2.5)

= 10 e−5

= 0.067

or
v ≈ 0.

The plot of the output voltage, v(t), is shown in Fig. 10.10. Mathematically
speaking, the response of a capacitor discharging in an RC circuit is identical
to the response of a leaking bucket with initial fluid height h0!

v(t),V

10

3.68

0
0 0.5 2.5

t, s

Figure 10.10 The voltage across the capacitor in example 10-5.

Example
10-6

Consider a voltage vs(t) applied to an RL circuit, as shown in Fig. 10.11.

−vs(t)
+

R

+ vR(t) −

+
vL(t)

−

i(t)

L

Figure 10.11 Voltage applied to an RL circuit.
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Applying KVL yields
vR(t) + vL(t) = vs(t), (10.56)

where vR(t) = R i(t) is the voltage across the resistor and vL(t) = L
di(t)
dt

is the volt-
age across the inductor. Thus, equation (10.56) can be written in terms of the
current i(t) as

L
di(t)
dt

+ R i(t) = vs(t). (10.57)

If the applied voltage source is vs(t) = vs = constant, find the total solution for the
current i(t). Assume the initial current is zero (i(0) = 0).

Solution (a) Transient Solution: The transient solution is obtained by setting the RHS of
the differential equation to zero as

L
di(t)
dt

+ R i(t) = 0, (10.58)

and assuming a transient solution of the form

itran(t) = c est. (10.59)

The constant s is determined by substituting itran(t) and its derivative into
equation (10.58), which gives

L (c s es t) + R (c es t) = 0.

Factoring out est gives
c es t(Ls + R) = 0,

which implies
Ls + R = 0.

Solving for s gives

s = −R
L
. (10.60)

Substituting the above value of s into equation (10.59), the transient solution
of the output voltage is given by

itran(t) = c e−
R
L

t
. (10.61)

The constant c depends on the initial current flowing through the circuit and
is found in step 4.

(b) Steady-State Solution: Since the input vs(t) = vs, equation (10.57) can be writ-
ten as

L
di(t)
dt

+ R i(t) = vs. (10.62)
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Because the voltage applied to the RL circuit is constant, the steady-state solu-
tion of the current i(t) is assumed to be

iss(t) = E, (10.63)

where E is a constant. The value of E can be determined by substituting iss(t)
and its derivative into equation (10.62), which gives

L(0) + R (E) = vs.

Solving for E gives
E =

vs

R
.

Thus, the steady-state solution of the current is given by

iss(t) =
vs

R
. (10.64)

(c) Total Solution: The total solution for the current i(t) is obtained by adding the
transient and the steady-state solutions given by equations (10.61) and (10.64)
as

i(t) = c e−
R
L

t +
vs

R
. (10.65)

(d) Initial Conditions: The constant c can now be obtained by applying the initial
condition (i(0) = 0) to equation (10.65) as

i(0) = c e−
R
L
(0) +

vs

R
= 0.

or
c (1) +

vs

R
= 0

Solving for c gives
c = −

vs

R
. (10.66)

Substituting the above value of c into equation (10.65) gives

i(t) = −
vs

R
e−

R
L

t +
vs

R
or

i(t) =
vs

R
(1 − e−

R
L

t) A. (10.67)

As t → ∞, i(t) → vs∕R (i.e., the steady-state solution). It takes the current
t = 𝜏 = L∕R s to reach 63.2% of its steady-state value vs∕R. The plot of the
current i(t) is shown in Fig. 10.12. It can be seen that the current i(t) takes
approximately 5𝜏 to reach the steady-state value, as obtained for both the
charging of a capacitor and the filling of a leaking bucket.
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i(t), A
vs

R

vs

R

0
0

0.632

L
R 5 L 

R

t, s

Figure 10.12 The current flowing through an RL circuit.

Example
10-7

A constant voltage vs(t) =10 V is applied to the RL circuit shown in Fig. 10.13. The
circuit is described by the following differential equation:

0.1
di(t)
dt

+ 100 i(t) = 10. (10.68)

Find the current i(t) if the initial current is 50 mA (i.e., i(0) = 50 × 10−3).

−

R = 100 Ω 

i(t)

+

= 10 V

L = 100 mH vs(t)

Figure 10.13 RL circuit for example 10-7.

Solution (a) Transient Solution: The transient solution is obtained by setting the RHS of
the differential equation to zero as

0.1
di(t)
dt

+ 100 i(t) = 0, (10.69)

and assuming a solution of the form

itran(t) = c est. (10.70)
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The constant s is determined by substituting itran(t) and its derivative into
equation (10.69) and solving for s as

0.1 (c s es t) + 100 (c es t) = 0

c es t(0.1s + 100) = 0

0.1s + 100 = 0

s = −1000. (10.71)

Substituting the value of s into equation (10.70), the transient solution of the
current is given by

itran(t) = c e−1000 t. (10.72)

The constant c depends on the initial current flowing through the circuit
and will be obtained by applying the initial condition to the total solution in
step 4.

(b) Steady-State Solution: Because the voltage applied to the RL circuit is con-
stant (the RHS of equation (10.68) is constant), the steady-state solution is
assumed to be

iss(t) = E, (10.73)

where E is a constant. The value of E can be determined by substituting iss(t)
and its derivative into equation (10.68), which gives

0.1(0) + 100 (E) = 10.

Solving for E gives
E = 0.1 A.

Thus, the steady-state solution for the current is given by

iss(t) = 0.1 A. (10.74)

(c) Total Solution: The total solution is obtained by adding the transient and the
steady-state solutions given by equations (10.72) and (10.74) as

i(t) = c e−1000 t + 0.1 A. (10.75)

(d) Initial Conditions: The constant c can now be obtained by applying the initial
condition i(0) = 50 mA into equation (10.75) as

i(0) = c e−1000 (0) + 0.1 = 0.05

or
c (1) + 0.1 = 0.05.

Solving for c gives
c = −0.05. (10.76)

Substituting the value of c into equation (10.75) gives

i(t) = −0.05 e−1000 t + 0.1
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or
i(t) = 0.1

(
1 − 0.5 e−1000 t) A. (10.77)

Note that as t → ∞, i(t) → 0.1 = 100 mA (i.e., the current reaches its
steady-state solution). It takes the current t = 𝜏 = 1/1000 = 1 ms to reach 0.1(1
−0.5 × 0.368) = 0.0816 A or 81.6 mA. The value of the current at t = 𝜏 can
also be found from the expression: Initial value +0.632× (Steady-state value −
Initial value) or 50 + 0.632 × (100 − 50) = 81.6 mA. The plot of the current i(t)
is shown in Fig. 10.14. It can be seen from this figure that the current i(t) takes
approximately 5𝜏 = 5 ms to reach the final value.

i(t), mA 

100

81.6

50

0
0 1 5

t, ms

Figure 10.14 The current flowing through the RL circuit of example 10-7.

Example
10-8

A biomedical engineering graduate student uses the Windkessel model shown in
Fig. 10.15 to investigate the relationship between arterial blood flow and blood
pressure in a single artery. In this model, the arterial pressure P(t) satisfies the
following first-order differential equation:

dP(t)
dt

+ 1
RC

P(t) =
Q̇in

C
, (10.78)

where Q̇in is the volumetric blood flow, R is the peripheral resistance, and C is

arterial compliance. If the volumetric blood flow Q̇in is 80 cm3

s
,

(a) Find the transient solution Ptran(t) for the arterial pressure. The unit for P(t) is
mmHg.
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(b) Determine the steady-state solution Pss(t) for the arterial pressure.

(c) Determine the total solution P(t) assuming that the initial arterial pressure is

7 mmHg. Also, assume R = 5
mmHg
(cm3∕s)

and C = 0.5 cm3

mmHg
.

(d) Evaluate P(t) after one time constant 𝜏, and sketch the solution of P(t) for
0 ≤ t ≤ 5 𝜏.

Qin
˙ P

Artery

Qout
˙

Figure 10.15 Windkessel model.

Solution (a) Transient Solution: The transient solution is obtained by setting the RHS of
the differential equation (10.78) to zero as

dP(t)
dt

+ 1
RC

P(t) = 0 (10.79)

and assuming a solution of the form

Ptran(t) = c est. (10.80)

The constant s is determined by substituting Ptran(t) and its derivative into
equation (10.79) and solving for s as

(c s es t) + 1
RC

(c es t) = 0

c es t(s + 1
RC

) = 0

s + 1
RC

= 0

s = − 1
RC

. (10.81)

Substituting the value of s from equation 10.81 into equation (10.80), the tran-
sient solution of the arterial pressure is given by

Ptran(t) = c e−
1

RC
t
. (10.82)

The constant c depends on the initial pressure of the blood flowing through
the artery and will be obtained by applying the initial condition to the total
solution in step 4.
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(b) Steady-State Solution: Because the volumetric blood flow in the artery is con-
stant (the RHS of equation (10.78) is constant), the steady-state solution is
assumed to be

Pss(t) = K, (10.83)

where K is a constant. The value of K can be determined by substituting Pss(t)
and its derivative into equation (10.78), which gives

(0) + 1
RC

(K) = Q̇
C
.

Solving for K gives
K = 80 R mmHg.

Thus, the steady-state solution for the arterial pressure is given by

Pss(t) = 80 R mmHg. (10.84)

(c) Total Solution: The total solution is obtained by adding the transient and the
steady-state solutions given by equations (10.82) and (10.84) as

P(t) = c e−
1

RC
t + 80 R mmHg. (10.85)

(d) Initial Conditions: The constant c can now be obtained by applying the initial
condition P(0) = 7 mmHg into equation (10.85) as

P(0) = c e−
1

RC
(0) + 80 R = 7.

Substituting R = 5 and C = 0.5 gives

c (1) + 400 = 7.

Solving for c gives
c = −393. (10.86)

Substituting the value of c into equation (10.85) gives

P(t) = −393 e−0.4 t + 400

or
P(t) = 400

(
1 − 0.9825 e−0.4 t) mmHg. (10.87)

Note that as t → ∞, P(t) → 400 mmHg (i.e., the pressure reaches its
steady-state solution). It takes the pressure t = 𝜏 = 1/0.4 = 2.5 s to reach
400(1 − 0.9825(0.368)) = 255.4 mmHg. The value of the pressure at t = 𝜏 can
also be found from the expression: Initial value + 0.632 × (Steady-state value
− Initial value) or 7 + 0.632 × (400 − 7) = 255.4 mmHg. The plot of the current
P(t) is shown in Fig. 10.16. It can be seen from this figure that it takes the
pressure P(t) approximately 5𝜏 = 12.5 s to reach its final value.
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P(t), mmHg

400

255.4

0
0 2.5 5 7.5 10 12.5

t, s

Figure 10.16 The blood pressure in a single artery.

Example
10-9

The differential equation for the RC circuit of Fig. 10.5 is given by

R C
dv(t)

dt
+ v(t) = vs(t). (10.88)

Find the output voltage v(t) if vs(t) = V sin𝜔 t and the initial voltage is zero (i.e.,
v(0) = 0).

Solution (a) Transient Solution: The transient solution vtran(t) for the differential
equation (10.88) is the same as that found in example 10-3 and is given by

vtran(t) = c e−
1

RC
t
. (10.89)

The constant c will be determined by applying the initial condition to the total
solution in step 4.

(b) Steady-State Solution: Since vs(t) = V sin𝜔 t, equation (10.88) can be writ-
ten as

RC v̇(t) + v(t) = V sin𝜔 t. (10.90)

According to Table 10.1, the steady-state solution of the output voltage v(t)
has the form

vss(t) = A sin𝜔 t + B cos𝜔 t, (10.91)

where A and B are constants to be determined. The values of A and B can
be found by substituting vss(t) and its derivative into equation (10.90). The
derivative of vss(t) is obtained by differentiating equation (10.91), which gives

v̇ss(t) = A𝜔 cos𝜔 t − B𝜔 sin𝜔 t. (10.92)

Substituting equations (10.91) and (10.92) into equation (10.90) gives

RC(A𝜔 cos𝜔 t − B𝜔 sin𝜔 t) + A sin𝜔 t + B cos𝜔 t = V sin𝜔 t. (10.93)
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Grouping like terms in equation (10.93) yields

(−RCB𝜔 + A) sin𝜔 t + (RCA𝜔 + B) cos𝜔 t = V sin𝜔 t. (10.94)

Comparing the coefficients of sin𝜔 t on both sides of equation (10.94) gives

−RCB𝜔 + A = V. (10.95)

Similarly, comparing the coefficients of cos𝜔 t on both sides of equation
(10.94) gives

RCA𝜔 + B = 0. (10.96)

Equations (10.95) and (10.96) represent a 2 × 2 system of equations for the two
unknowns A and B. These equations can be solved using one of the methods
discussed in Chapter 7 and are given by

A = V
1 + (RC𝜔)2

(10.97)

B = −RC𝜔V
1 + (RC𝜔)2

. (10.98)

Substituting A and B from equations (10.97) and (10.98) into equation (10.92)
yields

vss(t) =
(

V
1 + (RC𝜔)2

)
sin𝜔 t +

(
−RC𝜔V

1 + (RC𝜔)2

)
cos𝜔 t

or
vss(t) =

V
1 + (RC𝜔)2

(sin𝜔 t − RC𝜔 cos𝜔 t). (10.99)

As discussed in Chapter 6, summing sinusoids of the same frequency gives

sin𝜔 t − RC𝜔 cos𝜔 t =
√

1 + (RC𝜔)2 sin(𝜔 t + 𝜙), (10.100)

where 𝜙 = atan2(−RC𝜔, 1) = −tan−1(RC𝜔). Substituting equation (10.100)
into equation (10.99) gives the steady-state solution as

vss(t) =
(

V
1 + (RC𝜔)2

) (√
1 + (RC𝜔)2 sin (𝜔 t + 𝜙)

)
or

vss(t) =

(
V√

1 + (RC𝜔)2

)
sin (𝜔 t + 𝜙). (10.101)

(c) Total Solution: The total solution is obtained by adding the transient and the
steady-state solutions given by equations (10.89) and (10.101) as

v(t) = c e−
1

RC
t +

(
V√

1 + (RC𝜔)2

)
sin (𝜔 t + 𝜙). (10.102)
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(d) Initial Conditions: The constant c can now be obtained by applying the initial
condition v(0) = 0 to equation (10.102) as

v(0) = c (1) +

(
V√

1 + (RC𝜔)2

)
sin𝜙 = 0

or

c = −

(
V√

1 + (RC𝜔)2

)
sin𝜙. (10.103)

Since 𝜙 = −tan−1(RC𝜔), the value of sin𝜙 can be found from the fourth-
quadrant triangle shown in Fig. 10.17 as

sin𝜙 = −RC𝜔√
1 + (RC𝜔)2

. (10.104)

y

1

1 + (RCω) 2

x

−RCω
𝜙

Figure 10.17 Fourth-quadrant triangle to find sin𝜙.

Substituting sin𝜙 from equation (10.104) into equation (10.103) yields

c = −

(
V√

1 + (RC𝜔)2

) (
−RC𝜔√

1 + (RC𝜔)2

)

or
c = RC𝜔V

1 + (RC𝜔)2
. (10.105)

Substituting the value of c from equation (10.105) into equation (10.102) gives

v(t) = RC𝜔V
1 + (RC𝜔)2

e−
1

RC
t + V√

1 + (RC𝜔)2
sin (𝜔 t + 𝜙). (10.106)

Note that as t → ∞, the total solution reaches the steady-state solution. Thus,
the amplitude of the output voltage as t → ∞ is given by

|v(t)| = V√
1 + (RC𝜔)2

. (10.107)

The amplitude of the input voltage vs(t) = V sin(𝜔 t) is given by

|vs(t)| = V. (10.108)
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Dividing the amplitude of the output at steady state (10.107) by the amplitude
of the input (10.108) gives

|v(t)||vs(t)| =
V√

1 + (RC𝜔)2

V

or |v(t)||vs(t)| = 1√
1 + (RC𝜔)2

. (10.109)

Note that as 𝜔 → 0, |v(t)||vs(t)| → 1.

This means that for low-frequency input, the amplitude of the output is about
the same as the input. However, as 𝜔 → ∞,

|v(t)||vs(t)| → 0.

This means that for high-frequency input, the amplitude of the output is close
to zero.

The RC circuit shown in Fig. 10.5 is known as a low-pass filter, because it passes
the low-frequency inputs but filters out the high-frequency inputs. This will be
further illustrated in example 10-10.

Example
10-10

Consider the low-pass filter of the previous example with RC = 0.5 and V = 10 V.

(a) Find the total solution v(t).

(b) Find the ratio
|v(t)||vs(t)| as 𝜔 → ∞. Also plot the steady-state output for both

𝜔 = 0.1 rad/s and 10 rad/s.

Solution (a) The total solution for the output voltage is obtained by substituting RC = 0.5
and V = 10 into equation (10.106) as

v(t) = 5𝜔
1 + (0.5𝜔)2

e−2 t + 10√
1 + (0.5𝜔)2

sin (𝜔 t − tan−10.5𝜔). (10.110)

(b) For 𝜔 = 0.1 rad/s, the ratio
|v(t)||vs(t)| can be found from equation (10.109) as

|v(t)||vs(t)| = 1√
1 + (0.5 ∗ 0.1)2

= 0.9988.
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For 𝜔 = 10 rad/s, the ratio is given by

|v(t)||vs(t)| = 1√
1 + (0.5 ∗ 10)2

= 0.1961.

As 𝜔 → ∞, the ratio
|v(t)||vs(t)| → 0.

The plots of the output for 𝜔 = 0.1 and 10 rad/s are shown in Figs. 10.18 and 10.19,
respectively. It can be seen that as 𝜔 increases from 0.1 to 10 rad/s, the amplitude of
the steady-state output decreases from 10 ∗ (0.9988) = 9.988 V to 10 ∗ (0.1961) =
1.961 V. It can be seen from equation (10.109) that if 𝜔 → ∞, the amplitude of the
output will approach zero.

v(t), V

10

0
0 62.83 125.66 188.49

t, s

−10

Figure 10.18 Output voltage for 𝜔 = 0.1 rad/s.

v(t), V

3

2

0
0 1.25 2.5 3.75

t, s
5

−2

Figure 10.19 Output voltage for 𝜔 = 10 rad/s.
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10.5 SECOND-ORDER DIFFERENTIAL EQUATIONS

10.5.1 Free Vibration of a Spring–Mass System

Consider a spring–mass system in the vertical plane, as shown in Fig. 10.20, where k is
the spring constant, m is the mass, and y(t) is the position measured from equilibrium.

k 
g

m

y(t)

Figure 10.20 Mass–spring system.

At the equilibrium position, the external forces on the block are shown in the
free-body diagram (FBD) of Fig. 10.21, where 𝛿 is the equilibrium elongation of the
spring, mg is the force due to gravity, and k 𝛿 is the restoring force in the spring.

m

mg

kδ

Figure 10.21 Free-body diagram of the mass–spring system with no motion.

From equilibrium of forces in the y-direction,

k 𝛿 = mg,

which gives
𝛿 =

mg
k

. (10.111)

This equilibrium elongation 𝛿 is also called the static deflection.
Now, if the mass is displaced from its equilibrium position by the amount y(t),

the FBD of the system is as shown in Fig. 10.22.

k (δ + y(t)) 

m

y(t)

mg

Figure 10.22 Free-body diagram of the mass–spring system displaced from equilibrium.
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Since the system is no longer in equilibrium, Newton’s second law (
∑

F = m a) can
be used to write the equation of motion as∑

Fy = m a = m ÿ(t).

Summing the forces in Fig. 10.22 gives

mg − k(𝛿 + y(t)) = m ÿ(t)

or
mg − k 𝛿 − k y(t) = m ÿ(t). (10.112)

Substituting 𝛿 from equation (10.111) gives

m g − k
(mg

k

)
− k y(t) = m ÿ(t)

or
−k y(t) = m ÿ(t),

which gives
m ÿ(t) + k y(t) = 0. (10.113)

Equation (10.113) is a second-order differential equation for the displacement y(t)
of the spring–mass system shown in Fig. 10.20.

Example
10-11

Find the solution to equation (10.113) if the mass is subjected to an initial displace-
ment of y(0) = A and let go. Note that the initial velocity is zero (ẏ(0) = 0).

Solution (a) Transient Solution: Since the RHS of the equation is zero, assume a transient
solution of the form

ytran(t) = c es t.

The first and second derivatives of the transient solution are given by

ẏtran(t) = c s es t

ÿtran(t) = c s2 es t.

Substituting the transient solution and its derivatives into equation (10.113)
yields

m(c s2 es t) + k(c es t) = 0.

Factoring out est gives
c es t(ms2 + k) = 0,

which implies that
m s2 + k = 0. (10.114)

Solving for s yields

s2 = − k
m
,

which gives

s = ±
√

− k
m
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or

s = 0 ± j

√
k
m
,

where j =
√
−1. The two roots of the characteristic equation (10.114) are thus

s1 = + j
√

k
m

and s2 = − j
√

k
m

. Therefore, the transient solution is given by

ytran(t) = c1 es1 t + c2 es2 t

or

ytran(t) = c1 e j
√

k
m

t + c2 e− j
√

k
m

t
, (10.115)

where c1 and c2 are constants. Using Euler’s formula ej 𝜃 = cos 𝜃 + j sin 𝜃,
equation (10.115) can be written as

ytran(t) = c1

(
cos

√
k
m

t + j sin

√
k
m

t

)
+

c2

[
cos

(
−
√

k
m

t

)
+ j sin

(
−
√

k
m

t

)]
. (10.116)

Since cos(−𝜃) = cos(𝜃) and sin(−𝜃) = −sin(𝜃), equation (10.116) can be writ-
ten as

ytran(t) = c1

(
cos

√
k
m

t + j sin

√
k
m

t

)
+

c2

(
cos

√
k
m

t − j sin

√
k
m

t

)

or

ytran(t) = (c1 + c2) cos

√
k
m

t + j (c1 − c2) sin

√
k
m

t.

This can be further simplified as

ytran(t) = c3 cos

√
k
m

t + c4 sin

√
k
m

t, (10.117)

where c3 = c1 + c2 and c4 = j (c1 − c2) are real constants. Note that the con-
stants c1 and c2 must be complex conjugates for ytran(t) to be real. Therefore,
the transient solution of a mass–spring system can be written in terms of sines

and cosines with natural frequency 𝜔n =
√

k
m

.

(b) Steady-State Solution: Since the RHS of equation (10.113) is already zero (no
forcing function), the steady-state solution is zero, for example

yss(t) = 0. (10.118)
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(c) Total Solution: The total solution for the displacement y(t) can be found by
adding the transient and steady-state solutions from equations (10.117) and
(10.118), which gives

y(t) = c3 cos

√
k
m

t + c4 sin

√
k
m

t. (10.119)

(d) Initial Conditions: The constants c3 and c4 are determined from using the
initial conditions y(0) = A and ẏ(0) = 0. Substituting y(0) = A in equation
(10.119) gives

y(0) = c3 cos(0) + c4 sin(0) = A (10.120)

or
c3 (1) + c4 (0) = A,

which gives
c3 = A.

Thus, the displacement of the mass is given by

y(t) = A cos

√
k
m

t + c4 sin

√
k
m

t. (10.121)

The velocity of the mass can be found by differentiating y(t) in equation
(10.121) as

ẏ(t) = −A

√
k
m

sin

√
k
m

t + c4

√
k
m

cos

√
k
m

t. (10.122)

The constant c4 can now be found by substituting ẏ(0) = 0 in equation (10.122)
as

ẏ(0) = −A

√
k
m

sin(0) + c4

√
k
m

cos(0) = 0

or

−A (0) + c4

(√
k
m

)
= 0,

which gives
c4 = 0.

Thus, the total solution for the displacement is given by

y(t) = A cos

√
k
m

t

or
y(t) = A cos𝜔n t.

The plot of the displacement y(t) is shown in Fig. 10.23. It can be seen that the
amplitude of the displacement is simply the initial displacement A, and the

block oscillates at a frequency of 𝜔n =
√

k
m

. Note that the natural frequency is
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proportional to the square root of the spring constant and is inversely propor-
tional to the square root of the mass (i.e., the natural frequency increases with
stiffness and decreases with mass). This is a general result for free vibration of
mechanical systems.

y(t)

ymax = A

0 
0 π

ωn

t, s 
2π
ωn

−A

Figure 10.23 Displacement of the spring for example 10-11.

10.5.2 Forced Vibration of a Spring–Mass System

Suppose the spring–mass system is subjected to an applied force f (t), as shown in
Fig. 10.24.

k 
g

m

f(t)
y(t)

Figure 10.24 Spring–mass system subjected to applied force.

In this case, the derivation of the governing equation includes an additional force f (t)
on the RHS. Thus, the equation of motion of the system can be written as

m ÿ(t) + k y(t) = f (t). (10.123)

Equation (10.123) is a second-order differential equation for the displacement y(t)
of a mass–spring system subjected to a force f (t).
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Example
10-12

Find the solution to equation (10.123) if f (t) = F cos𝜔 t and y(0) = ẏ(0) = 0. Also,

investigate the response as 𝜔 →
√

k
m

.

Solution (a) Transient Solution: The transient solution is obtained by setting f (t) = 0, which
gives

m ÿ(t) + k y(t) = 0.

This is the same as equation (10.113) for free vibration. Hence, the transient
solution is given by equation (10.117) as

ytran(t) = c3 cos

√
k
m

t + c4 sin

√
k
m

t, (10.124)

where c3 and c4 are real constants to be determined.

(b) Steady-State Solution: Since the forcing function is f (t) = F cos𝜔 t, the
steady-state solution is of the form

yss(t) = A sin𝜔 t + B cos𝜔 t. (10.125)

The first and second derivatives of the steady-state solution are thus

ẏss(t) = A𝜔 cos𝜔 t − B𝜔 sin𝜔 t

ÿss(t) = −A𝜔2 sin𝜔 t − B𝜔2 cos𝜔 t. (10.126)

Substituting ÿss(t), yss(t), and f (t) = F cos(𝜔 t) into equation (10.123) gives

m(−A𝜔2 sin𝜔 t − B𝜔2 cos𝜔 t) + k(A sin𝜔 t + B cos𝜔 t) = F cos𝜔 t.

Grouping like terms yields

A(k − m𝜔2) sin𝜔 t + B(k − m𝜔2) cos𝜔 t = F cos(𝜔 t). (10.127)

Equating the coefficients of sin𝜔 t on both sides of equation (10.127) yields

A(k − m𝜔2) = 0,

which gives

A = 0

(
provided 𝜔 ≠

√
k
m

)
.

Similarly, equating the coefficients of cos𝜔 t on both sides of equation (10.127)
yields

B(k − m𝜔2) = F,

which gives

B = F
k − m𝜔2

(
provided 𝜔 ≠

√
k
m

)
.

Therefore, the steady-state solution is given by

yss(t) =
( F

k − m𝜔2

)
cos𝜔 t. (10.128)
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(c) Total Solution: The total solution for y(t) is obtained by adding the transient
and steady-state solutions from equations (10.124) and (10.128) as

y(t) = c3 cos

√
k
m

t + c4 sin

√
k
m

t +
( F

k − m𝜔2

)
cos𝜔 t. (10.129)

(d) Initial Conditions: The constants c3 and c4 are determined from the initial
conditions y(0) = 0 and ẏ(0) = 0. The velocity of the mass can be obtained by
differentiating equation (10.129) as

ẏ(t) = −c3

√
k
m

sin

√
k
m

t + c4

√
k
m

cos

√
k
m

t −

𝜔

( F
k − m𝜔2

)
sin𝜔 t. (10.130)

Substituting y(0) = 0 in equation (10.129) gives

y(0) = c3 cos(0) + c4 sin(0) +
( F

k − m𝜔2

)
cos(0) = 0

or
c3 (1) + c4 (0) +

( F
k − m𝜔2

)
(1) = 0,

which gives

c3 = − F
k − m𝜔2

.

Similarly, substituting ẏ(0) = 0 in equation (10.130) yields

ẏ(0) = −c3 (0) + c4

√
k
m

cos(0) − 𝜔

( F
k − m𝜔2

)
sin(0) = 0

or

c3 (0) + c4

√
k
m

(1) − 𝜔

( F
k − m𝜔2

)
(0) = 0,

which gives
c4 = 0.

Thus, the displacement of the mass is given by

y(t) = −
( F

k − m𝜔2

)
cos

√
k
m

t +
( F

k − m𝜔2

)
cos𝜔 t (10.131)

or

y(t) =
( F

k − m𝜔2

) (
cos𝜔 t − cos

√
k
m

t

)
. (10.132)

Note that the results obtained above assumed that 𝜔 ≠

√
k
m

. But nevertheless we

can investigate the behavior as 𝜔 gets very close to
√

k
m

.
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What is the response of y(t) as 𝜔 →
√

k
m

?

As 𝜔 →
√

k
m

,

y(t) →
(F

0

) (
cos

√
k
m

t − cos

√
k
m

t

)

= 0
0
.

This is an “indeterminate” form and can be evaluated by methods of calculus not yet
available to all students. However, the result can be investigated by picking values of

𝜔 close to
√

k
m

and plotting the results. For example, let k = m = F = 1, and choose

the values of 𝜔 = 0.9
√

k
m

, 𝜔 = 0.99
√

k
m

, and 𝜔 = 0.9999
√

k
m

. The plots of equation
(10.132) for these values are as shown in Figs. 10.25, 10.26, and 10.27, respectively.

y(t)

15

10

5

0

−5

−10

−15
0 20 40 60 80 100 120 140 160 180 200

t, s

Figure 10.25 Displacement of the mass for 𝜔 = 0.9
√

k
m

.

y(t) 

100

80

60

40

20

0

−20

−40

−60

−80

−100
0 20 40 60 80 100 120 140 160 180 200

t, s

Figure 10.26 Displacement of the mass for 𝜔 = 0.99
√

k
m

.
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y(t)

100

80

60

40

20

0

−20

−40

−60

−80

−100
0 20 40 60 80 100 120 140 160 180 200

t, s

Figure 10.27 Displacement of the spring for 𝜔 = 0.9999
√

k
m

.

The plot for 𝜔 = 0.9
√

k
m

in Fig. 10.25 shows the “beating” phenomenon typical of
problems where the forcing frequency 𝜔 is in the neighborhood of the natural fre-

quency
√

k
m

. As 𝜔 is increased to 0.99
√

k
m

and 0.9999
√

k
m

, Figs. 10.26 and 10.27
show y(t) increasing without bound. This is called resonance and is generally unde-
sirable in mechanical systems.

Example
10-13

A biomedical engineer is designing a resistive training device to strengthen the
latissimus dorsi muscle. The task can be represented as a spring–mass system,
as shown in Fig. 10.28. The displacement y(t) of the exercise bar satisfies the
second-order differential equation

m ÿ(t) + k y(t) = f (t) (10.133)

subject to the initial condition y(0) = E and ẏ(0) = 0.

(a) Determine the transient solution ytran(t).
(b) Determine the steady-state solution yss(t) for the applied force shown in

Fig. 10.29.

(c) Determine the total solution, subject to the initial conditions.

f(t)

m

k

Figure 10.28 Spring–mass model of resistive training device.



Trim Size: 8in x 10in Rattan2e c10.tex V1 - 03/15/2021 3:40pm Page 392�

� �

�

392 Chapter 10 Differential Equations in Engineering

H

0 1 2

f(t)

t

Figure 10.29 Applied force for resistive training device.

Solution (a) Transient Solution: The transient solution is obtained by setting the RHS of
equation (10.133) equal to zero as

m
d2y(t)

dt2
+ k y(t) = 0 (10.134)

and assuming a solution of the form

ytran(t) = es t.

Substituting the transient solution and its second derivative into equation
(10.134) yields

m(s2 es t) + k (es t) = 0.

Factoring out est gives
es t(m s2 + k) = 0,

which implies
m s2 + k = 0. (10.135)

Solving for s yields

s2 = − k
m

or

s = ± j

√
k
m
.

The two roots of equation (10.135) are s1 = + j
√

k
m

and s2 = − j
√

k
m

. Thus, the
transient solution is given by

ytran(t) = c3 cos

√
k
m

t + c4 sin

√
k
m

t, (10.136)

where c3 and c4 are real constants and
√

k
m

is the natural frequency 𝜔n.

(b) Steady-State Solution: Since the forcing function is f (t) = H t∕2, the
steady-state solution is of the form

yss(t) = A t + B. (10.137)

Substituting the ÿss(t) and yss(t) into equation (10.133) gives

m × 0 + k (A t + B) = H
2

t. (10.138)
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Equating the coefficients of t on both sides of equation (10.138) yields

kA = H
2
,

which gives

A = H
2k

.

Similarly, equating the constant coefficients on both sides of equation (10.138)
yields

B = 0.

Thus, the steady-state solution is given by

yss(t) =
( H

2k

)
t. (10.139)

(c) Total Solution: The total solution of the displacement y(t) can be found by
adding the transient and steady-state solutions from equations (10.136) and
(10.139), which gives

y(t) = c3 cos

√
k
m

t + c4 sin

√
k
m

t +
( H

2k

)
t. (10.140)

The constants c3 and c4 are determined using the initial conditions y(0) = E
and ẏ(0) = 0. Substituting y(0) = E into equation (10.140) yields

y(0) = c3 cos(0) + c4 sin(0) +
( H

2k

)
(0) = E

or
c3 (1) + c4 (0) + 0 = E,

which gives
c3 = E.

The derivative of y(t) is obtained by differentiating equation (10.140) as

ẏ(t) = −c3

√
k
m

sin

√
k
m

t + c4

√
k
m

cos

√
k
m

t + H
2k

(10.141)

Substituting ẏ(0) = 0 in equation (10.141) yields

0 = −c3 (0) + c4

√
k
m

+
( H

2k

)
,

which gives

c4 = − H

2k
√

k∕m
.

Thus, the displacement of the exercise bar is given by

y(t) = E cos

√
k
m

t −

(
H

2k
√

k∕m

)
sin

√
k
m

t + H
2k

t.
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10.5.3 Second-Order LC Circuit

A source voltage vs(t) is applied to an LC circuit, as shown in Fig. 10.30.

−vs(t) +

L

+  vL (t)  − 

C

i(t)

+
v(t)

−

Figure 10.30 Voltage applied to an LC circuit.

Applying KVL to the circuit gives

vL(t) + v(t) = vs, (10.142)

where vL(t) = L di(t)
dt

is the voltage across the inductor. Since the current flowing

through the circuit is given by i(t) = C dv(t)
dt

, vL(t) can be written as vL(t) = L C d2v(t)
dt2

.
Substituting vL(t) into equation (10.142) yields

L C
d2v(t)

dt2
+ v(t) = vs(t). (10.143)

Equation (10.143) is a second-order differential equation for an LC circuit subjected
to forcing function vs(t).

Example
10-14

Suppose the LC circuit of Fig. 10.30 is subjected to a voltage source vs(t) =
V cos𝜔 t. Solve the resulting differential equation

L C v̈(t) + v(t) = V cos𝜔 t

subject to the initial condition v(0) = v̇(0) = 0. Note that since i(t) = C
dv
dt

, the con-
dition v̇(0) = 0 means the initial current is zero.

Solution (a) Transient Solution: The transient solution is the solution obtained by setting
the RHS of equation (10.143) equal to zero

L C
d2v(t)

dt2
+ v(t) = 0, (10.144)

and assuming a solution of the form

ytran(t) = es t.

Substituting the transient solution and its second derivative into the equation
(10.144) yields

LC(s2 es t) + (es t) = 0.
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Factoring out est gives
es t(LC s2 + 1) = 0,

which implies
LC s2 + 1 = 0. (10.145)

Solving for s yields

s2 = − 1
LC

or

s = ± j

√
1

LC
.

The two roots of equation (10.145) are s1 = + j
√

1
LC

and s2 = − j
√

1
LC

. Thus,
the transient solution is given by

vtran(t) = c3 cos

√
1

LC
t + c4 sin

√
1

LC
t, (10.146)

where c3 and c4 are real constants and
√

1
LC

is the natural frequency 𝜔n.

(b) Steady-State Solution: Since the forcing function is vs(t) = V cos𝜔 t, the
steady-state solution is of the form

vss(t) = A sin𝜔 t + B cos𝜔 t. (10.147)

Substituting the v̈ss(t) and vss(t) into equation (10.143) gives

LC(−A𝜔2 sin𝜔 t − B𝜔2 cos𝜔 t) + (A sin𝜔 t + B cos𝜔 t) = V cos𝜔 t.

Grouping like terms yields

A(1 − LC𝜔2) sin𝜔 t + B(1 − LC𝜔2) cos𝜔 t = V cos𝜔 t. (10.148)

Equating the coefficients of sin𝜔 t on both sides of equation (10.148) yields

A(1 − LC𝜔2) = 0,

which gives

A = 0

(
provided 𝜔 ≠

√
1

LC

)
.

Similarly, equating the coefficients of cos𝜔 t on both sides of equation (10.148)
yields

B(1 − LC𝜔2) = V

or

B = V
1 − LC𝜔2

(
provided 𝜔 ≠

√
1

LC

)
.

Thus, the steady-state solution is given by

vss(t) =
( V

1 − LC𝜔2

)
cos𝜔 t. (10.149)
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(c) Total Solution: The total solution for the voltage v(t) can be found by adding
the transient and steady-state solutions from equations (10.146) and (10.149),
which gives

v(t) = c3 cos

√
1

LC
t + c4 sin

√
1

LC
t +

( V
1 − LC𝜔2

)
cos𝜔 t. (10.150)

(d) Initial Conditions: The constants c3 and c4 are determined using the initial
conditions v(0) = 0 and v̇(0) = 0. Substituting v(0) = 0 into equation (10.150)
yields

v(0) = c3 cos(0) + c4 sin(0) +
( V

1 − LC𝜔2

)
cos(0) = 0

or

c3 (1) + c4 (0) +
( V

1 − LC𝜔2

)
(1) = 0,

which gives

c3 = − V
1 − LC𝜔2

.

The derivative of v(t) is obtained by differentiating equation (10.150) as

v̇(t) = −c3

√
1

LC
sin

√
1

LC
t + c4

√
1

LC
cos

√
1

LC
t

−𝜔
( V

1 − LC𝜔2

)
sin𝜔 t. (10.151)

Substituting v̇(0) = 0 in equation (10.151) yields

v̇(0) = −c3 (0) + c4

√
1

LC
cos(0) − 𝜔

( V
1 − LC𝜔2

)
sin(0) = 0

or

c3 (0) + c4

√
1

LC
(1) − 𝜔

( V
1 − LC𝜔2

)
(0) = 0,

which gives
c4 = 0.

Thus, the voltage across the capacitor is given by

v(t) = −
( V

1 − LC𝜔2

)
cos

√
1

LC
t +

( V
1 − LC𝜔2

)
cos𝜔 t

or

v(t) =
( V

1 − LC𝜔2

) (
cos𝜔 t − cos

√
1

LC
t

)
. (10.152)
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Note: A comparison of examples 10-12 (spring–mass) and 10-14 (LC circuit) reveals
that the solutions are identical, with the following corresponding quantities:

Spring–mass LC circuit
y(t) v(t)
m LC
k 1
F V

Although the two physical systems are entirely different, the math is exactly the
same. Such is the case for a wide range of problems across all disciplines of engi-
neering. Make no mistake . . . if you want to study engineering, then a little bit of
math can go an awfully long way.

PROBLEMS

10-1. A faucet supplies fluid to a container
of cross-sectional area A at a volume
flow rate Qin, as shown in Fig. P10.1.
At the same time, the fluid leaks out
the bottom at a rate Qout = k h(t),
where k is a constant. If the container is
initially empty, the fluid height h(t) sat-
isfies the following first-order differen-
tial equation and initial condition:

A
dh(t)

dt
+ k h(t) = Qin, h(0) = 0

h(t)

Qin

Qout = kh(t)

Figure P10.1 Leaking tank for problem P10-1.

(a) Determine the transient solution
htran(t).

(b) Suppose the faucet is turned on
and off in a sinusoidal fashion, so

that Qin = Q
2
(1 − cos𝜔 t). Deter-

mine the steady-state solution
hss(t).

(c) Determine the total solution h(t),
subject to the initial condition.

10-2. The initial temperature of the hot cof-
fee cup shown in Fig. P10.2 is T(0) =
175∘ F. The cup is placed in a room
temperature of T∞ = 70∘ F. The tem-
perature T(t) of the coffee at time t can
be approximated by Newton’s Law of
cooling as

dT
dt

+ k T(t) = k T∞,

where k is the effective heat transfer
coefficient.

Figure P10.2 A hot coffee cup placed in a room
temperature of 70∘ F.
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(a) Find the transient solution Ttran(t).
What is the time constant of the
response?

(b) Find the steady-state solution
Tss(t).

(c) Determine the total solution T(t).
(d) Sketch the total solution T(t). How

long does it take for the tempera-
ture to reach 99% of the room tem-
perature?

(e) Would increasing the value of k
increase or decrease the time when
the temperature of coffee reaches
the room temp?

(f) Would a lower or higher value of k
be best for a cup of coffee?

10-3. A constant voltage vs(t) = 18 V is
applied to the RC circuit shown in
Fig. P10.3. Assume that the switch has
been in position 1 for a long time.
At t = 0, the switch is moved instan-
taneously to position 2. For t ≥ 0, the
voltage v(t) across the capacitor satis-
fies the following differential equation
and initial condition:

RC
dv(t)

dt
+ v(t) = 0, v(0) = 18V.

(a) Find the transient solution vtran(t).
What is the time constant of the
response?

(b) Find the steady-state solution
vss(t).

(c) Determine the total solution v(t).
(d) Sketch the total solution v(t). How

long does it take for the response
to reach 99% of its steady-state
value?

(e) Mark each of the following state-
ments as true (T) or false (F):

Increasing the value of resistance
R will increase the time the voltage v(t)
reaches 99% of its steady-state value.

Increasing the value of capaci-
tance C will decrease the time the volt-
age v(t) reaches 99% of its steady-state
value.

Doubling the value of resis-
tance R will double the time constant
of the response.

Doubling the value of capaci-
tance C will double the time constant
of the response.

−

5 kΩ 1 2

t = 0 

vs(t)
+

+
C v(t)

−

R

Figure P10.3 RC circuit for problem P10-3.

10-4. Repeat parts (a)–(d) of problem P10-3
if R = 10 kΩ, C = 50 𝜇F, and vs(t) =
v(0) = 10 V.

10-5. During the production process at a
local brewery, a batch of beer with
6% alcohol is pumped into a barrel
containing a 500 gallon batch of beer
with 4% alcohol at a rate of 5 gallons/
minute, as shown in Fig. P10.4. The
resulting mixture is pumped out at the
same rate. As the two batches mix, the
total volume of alcohol in the barrel
a(t) changes as a function of time and
satisfies the following first-order differ-
ential equation and initial condition:

ȧ + 0.01a(t) = 0.3,

subject to the initial condition a(0) =
20 gallons of alcohol.
(a) Determine the transient solution

atran(t).
(b) Determine the steady-state solu-

tion ass(t).
(c) Determine the total solution a(t),

subject to the given initial condi-
tion.

(d) Plot a(t) as a function of time
for 0 ≤ t ≤ 240 min, and determine
the percentage of alcohol in the
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barrel after 1 hour (60 min). Hint:
Percentage of alcohol = a(60)/500.

Figure P10.4 Mixing of beer during production
process.

10-6. A constant voltage vs(t) = 10 V is
applied to the RC circuit shown in
Fig. P10.6. The voltage v(t) across the
capacitor satisfies the first-order differ-
ential equation

RC
dv(t)

dt
+ v(t) = vs(t).

(a) Find the transient solution vtran(t).
What is the time constant of the
response?

(b) Find the steady-state solution
vss(t).

(c) If the initial voltage across the
capacitor is v(0) = 5 V, determine
the total solution v(t).

(d) Sketch the total solution v(t). How
long does it take for the response
to reach 99% of its steady-state
value?

−

R

i(t)

vs(t)
+

+

C v(t)

−

Figure P10.6 RC circuit for problem P10-6.

10-7. Repeat problem P10-6 if R = 250 kΩ
and C = 400 𝜇F.

10-8. Repeat problem P10-6 if R = 100
kΩ, C = 50 𝜇F, vs(t) = 20 V, and
v(0) = 10 V.

10-9. The computer processor shown in
Fig. P10.9 operates at a temperature
of 140∘F. Upon shut down, the pro-
cessor begins to cool in a room with
an ambient temperature of 65∘F and
an effective heat transfer coefficient of
k = 0.065 min−1. The temperature of
the processor T(t) as a function of time
satisfies the following first-order differ-
ential equation:

dT
dt

+ kT(t) = kTroom.

(a) Determine the transient solution
Ttran(t).

(b) Determine the steady-state solu-
tion Tss(t).

(c) If the initial temperature is T(0) =
140∘F, find the total solution for
T(t).

(d) Assuming a safe working tem-
perature of 80∘F, how long must
a repair technician wait before
touching the processor?

(e) Plot the temperature T(t) found
in part (c) and label your answer
from part (d) on your graph.

(f) Now assume that the coefficient
k is controlled by adjusting the
fan used for cooling the processor.
Find the value of k that will cool
the computer processor to 80∘F in
10 minutes.

Figure P10.9 Cooling of a computer processor.

10-10. A sinusoidal voltage vs(t) =
10 sin(0.01 t) V is applied to the RC
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circuit (R = 10 kΩ and C = 10 𝜇F)
shown in Fig. P10.6. The voltage
v(t) across the capacitor satisfies the
first-order differential equation

RC
dv(t)

dt
+ v(t) = 10 sin (0.01 t).

(a) Find the transient solution vtran(t).
What is the time constant of the
response?

(b) Find the steady-state solution vss(t)
and plot one cycle of the response.
Note: One of the two terms in
the steady-state solution is small
enough to be neglected.

(c) If the initial voltage across the
capacitor is v(0) = 0, determine
the total solution v(t).

10-11. Repeat problem P10-10 if R = 50 kΩ,
C = 50 𝜇F.

10-12. The circuit shown in Fig. P10.12 con-
sists of a resistor and capacitor in
parallel that are subjected to a con-
stant current source I. At time t = 0,
the initial voltage across the capaci-
tor is zero. For time t ≥ 0, the voltage
across the capacitor satisfies the fol-
lowing first-order differential equation
and initial condition:

C
dv(t)

dt
+ v(t)

R
= I.

(a) Determine the transient solution
vtran(t).

(b) Determine the steady-state solu-
tion vss(t).

(c) Determine the total solution for
v(t) if v(0) = 0 V.

t = 0 

+

I R C   v(t)

−

Figure P10.12 RC circuit for problem P10-12.

(d) Calculate the voltage at times t =
RC, 2RC, 4RC, and as t → ∞. Use
your results to sketch v(t).

10-13. Repeat problem P10-12 if R = 2 kΩ,
C = 20 𝜇F, I = 20 mA, and v(0) = 0 V.

10-14. Repeat problem P10-12 if R = 2 kΩ,
C = 100 𝜇F, I = 5 mA, and v(0) = 0 V.

10-15. A 70 kg skydiver falling at an ini-
tial velocity of 50 m/s pulls the rip
cord on the parachute, as shown in
Fig. P10.15. Assuming a linear drag
coefficient estimation, the governing
equation for the skydiver’s velocity is
given by the following first-order dif-
ferential equation:

dv
dt

+ 2v(t) = 9.81.

Figure P10.15 Skydiver after pulling the rip cord.

(a) Determine the transient solution
vtran(t).

(b) Determine the steady-state solu-
tion vss(t).

(c) Determine the total solution for
v(t), subject to the given initial
velocity v(0) = 50 m/s.

(d) Use these results to plot the total
solution v(t) from 0 ≤ t ≤ 10 s.

(e) Determine the time required for
the skydiver to slow to a velocity
of both v = 5 m/s and v = 10 m/s.

10-16. A constant current is(t) = 100 mA
is applied to the RL circuit (R =
100 Ω and L = 100 mH) shown in
Fig. P10.16. Assume that the switch has
been closed for a long time. At t = 0,
the switch is opened instantaneously.
For t ≥ 0, the current i(t) flowing
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through the resistor satisfies the fol-
lowing differential equation and initial
condition:

L
R

di(t)
dt

+ i(t) = 0, i(0) = 50 mA.

is(t) 100 Ω 

t = 0 

i(t)

L R

Figure P10.16 RL circuit for problem P10-16.

(a) Find the transient solution itran(t).
What is the time constant of the
response?

(b) Find the steady-state solution
iss(t).

(c) Determine the total solution i(t).
(d) Sketch the total solution i(t). How

long does it take for the response
to reach 99% of its steady-state
value?

(e) Mark each of the following state-
ments as true (T) or false (F):

Increasing the value of resis-
tance R will increase the time the
voltage v(t) reaches 99% of its
steady-state value.

Increasing the value of
inductance L will decrease the
time the voltage v(t) reaches 99%
of its steady-state value.

Doubling the value of resis-
tance R will double the time con-
stant of the response.

Doubling the value of induc-
tance L will double the time con-
stant of the response.

10-17. Repeat problem P10-16 if R = 50 Ω
and L = 20 mH.

10-18. At time t = 0, an input voltage vin is
applied to the RL circuit shown in
Fig. P10.18. The output voltage v(t) sat-
isfies the following first-order differen-
tial equation:

dv(t)
dt

+ R
L

v(t) = R
L

vin(t).

If the input voltage vin(t) = 10 V,
(a) Determine the transient solution

vtran(t).
(b) Determine the steady-state solu-

tion vss(t).
(c) Determine the total solution for

v(t), assuming the initial voltage is
zero.

(d) Calculate the output voltage v(t)

at times t = L
R

, 2 L
R

, 4 L
R

s, and

as t → ∞. Use your results to
sketch v(t).

L

vin(t)   

+

R v(t)

−

+
−

Figure P10.18 RL circuit for problem P10-18.

10-19. Repeat problem P10-18 if R = 100Ω
and L = 250 mH.

10-20. Repeat problem P10-18 if R = 10Ω,
L = 200 mH, vin(t) = 20 V.

10-21. Suppose the governing equation for
the RL circuit shown in Fig. P10.18 is
given by

0.005
dv(t)

dt
+ v(t) = vin(t).

(a) Determine the transient solution
vtran(t) and determine the time
constant of the response.

(b) Determine the steady-state solu-
tion vss(t) if vin(t) = 10 V.
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(c) Determine the total solution v(t) if
the initial voltage is zero.

(d) Determine v(t) for t =5, 10, and 25
ms and sketch v(t) as a function of
time for 0 ≤ t ≤ 25 ms.

10-22. A constant voltage source vin(t) = 10
volts is applied to the OP-AMP cir-
cuit shown in Fig. P10.22. The out-
put voltage vo(t) satisfies the following
first-order differential equation and
initial conditions:

0.01
dvo(t)

dt
+ vo(t) = −vin(t),

subject to the initial condition vo(0) =
0 V.

R2 = 10 kΩ

R1 = 10 kΩ

C  = 1 μF

+vcc

−

+ +
+vin   

= 10 V

−vcc vo

−

−

Figure P10.22 OP-AMP circuit for
problem P10-22.

(a) Find the transient solution
vo,tran(t).

(b) Find the steady-state solution vo,ss
if vin = 10 V.

(c) If the initial output voltage is
vo(0) = 0 V, determine the total
response.

(d) What is the time constant 𝜏 of the
response? Plot the response vo(t)
and give the values of vo at t = 𝜏,
2 𝜏, and 5 𝜏.

10-23. An input voltage vin(t) is applied
to the OP-AMP circuit shown in
Fig. P10.23. The output voltage vo(t)
satisfies the following first-order differ-
ential equation and initial conditions:

0.2
dvo(t)

dt
+ vo(t) = −2 vin(t), vo(0) = 0 V.

R2 = 20 kΩ

R1 =10 kΩ +vcc

−

+
+

vin   −vcc vo

−

−
+

C  = 10 µF

Figure P10.23 OP-AMP circuit for
problem P10-23.

(a) Determine the transient solution
vo,tran(t). What is the time constant
𝜏 of the system?

(b) Determine the steady-state solu-
tion if vin(t) = 0.5 V.

(c) If the initial voltage v(0) = 0 V,
determine the total solution sub-
ject to the initial condition.

(d) Plot the response vo(t) and give
the values of vo(t) when t = 𝜏 and
when t = 5𝜏.

(e) Repeat part (b) only if the input
voltage is the sinusoidal function
vin(t) = 0.5 sin(0.5t) volts.

10-24. The relationship between arterial
blood flow and blood pressure in a sin-
gle artery shown in Fig. 10.15 satisfies
the following first-order differential
equation:

dP(t)
dt

+ 1
RC

P(t) =
Q̇in

C
,

where Q̇in is the volumetric blood flow,
R is the peripheral resistance, and C is
arterial compliance (all constant).
(a) Find the transient solution Ptran(t)

for the arterial pressure. The unit
for P(t) is mmHg. What is the time
constant of the arterial pressure?

(b) Determine the steady-state solu-
tion Pss(t) for the arterial pressure.

(c) Determine the total solution P(t)
assuming that the initial arterial
pressure is 0.
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(d) Evaluate P(t) at times t = RC, t =
2 RC, t = 4 RC, and t → ∞ and use
your results to sketch P(t).

(e) Mark each of the following state-
ments as true (T) or false (F):

Increasing the value of resis-
tance R will increase the time it
takes for the arterial pressure P(t)
to reach 99% of its steady-state
value.

Increasing the value of
capacitance C will decrease the
time it takes for the arterial pres-
sure P(t) to reach 99% of its
steady-state value.

Doubling the value of resis-
tance R will double the time con-
stant of the response.

Doubling the value of capac-
itance C will double the time con-
stant of the response.

10-25. A grandfather clock shown in
Fig. P10.25 keeps time using a pen-
dulum of length l and mass m that
oscillates in the vertical plane, sub-
ject to the acceleration of gravity g.
If the pendulum is initially displaced
by a small angle 𝜃o, the oscillation 𝜃(t)
satisfies the following second-order
differential equation and initial con-
ditions:

ml�̈� + mg𝜃(t) = 0, 𝜃(0) = 𝜃o and �̇�(0) = 0.

(a) Determine the total solution for
𝜃(t), subject to the initial condi-
tions. In so doing, clearly indi-
cate the natural frequency of the
system.

(b) Determine the period of the oscil-
lation and plot one complete cycle
of 𝜃(t). Clearly label both its maxi-
mum and minimum values and the
corresponding times.

(c) If the standard period for a grand-
father clock pendulum is 2 s,

calculate the approximate length l
of the pendulum arm required.

(d) Based on part (a) answer the fol-
lowing true/false questions with
a T/F.

Increasing the length l will
increase the frequency of the
response 𝜃(t) .

Increasing the mass m will
increase the frequency of the
response 𝜃(t).

Increasing the length l will
increase the amplitude of the
response 𝜃(t).

θ(t)

l

m

1
2

3

4
567

8

9

10
11 12

Figure P10.25 Pendulum in a grandfather clock.

10-26. The displacement y(t) of a spring–
mass system shown in Fig. P10.26 is
given by

0.25 ÿ(t) + 10 y(t) = 0.

(a) Find the transient solution ytran(t).
(b) Find the steady-state solution of

the displacement yss.

k = 10 N/m

m = 0.25 kg

y(t)

Figure P10.26 Mass–spring systems for
problem P10-26.
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(c) Determine the total displacement
y(t) if the initial displacement is
y(0) = 0.2 m and the initial velocity
is ẏ(0) = 0 m/s.

(d) Sketch the total displacement y(t).
10-27. The vertical vibration z(t) of a suspen-

sion bridge subject to wind loading sat-
isfies the differential equation

mz̈ + bz(t) = Win,

where b is the stiffness of the bridge, m
is the mass of the bridge, and Win is the
force of the wind on the bridge.

Figure P10.27 Vertical vibration of a suspension
bridge subject to wind loading.

(a) Determine the transient solution
ztran(t).

(b) Determine the steady-state solu-
tion zss(t) if Win = Wo cos(𝜔t).

(c) Determine the total solution z(t)
given that the initial vertical dis-
placement of the bridge is z(0) =
0 ft and the initial velocity is
ż(0) = 0 ft/s.

(d) What value of 𝜔 would cause the
vibration of the bridge to violently
increase without bound?

(e) Mark each of the following as true
(T) or false (F) :

Increasing the amplitude of
the wind Wo increases the natural
frequency of the bridge.

Increasing the stiffness b of
the bridge decreases its natural
frequency.

Doubling the mass m of
the bridge doubles its natural fre-
quency.

10-28. The displacement y(t) of a spring–mass
system shown in Fig. P10.28 is given by

ÿ(t) + 25 y(t) = f (t).

(a) Find the transient solution ytran(t).
(b) Find the steady-state solution of

the displacement yss if f (t) = 10 N.
(c) Determine the total displacement

y(t) if the initial displacement is
y(0) = 0 m and the initial velocity
is ẏ(0) = 0 m/s.

(d) Sketch the total displacement y(t).

k = 25 N/m

m =1 kg  

y(t)

f(t)

Figure P10.28 Mass–spring systems for problem
P10-28.

10-29. The balance wheel of a mechanical
watch shown in Fig. P10.29 is a har-
monic oscillator whose angular dis-
placement 𝜃(t) can be modeled with
the differential equation and initial
conditions as

I
d2𝜃

dt2
+ k𝜃(t) = 𝜏(t), 𝜃(0) = 0 and �̇�(0) = 0,

where I is the moment of inertia, k is
the stiffness of the torsional spring, and
𝜏(t) is the drive torque.

Iτ(t)

k

Figure P10.29 Balance wheel of a mechanical
watch.
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For a drive torque equal to a constant
value of T,
(a) Determine the total solution for

𝜃(t), subject to the initial con-
ditions. What is the natural fre-
quency of the system?

(b) Plot one cycle of the angular dis-
placement 𝜃(t), and clearly label its
maximum value.

(c) Choose the correct response in the
following statements:

Increasing the spring stiff-
ness k will INCREASE or
DECREASE or NOT AFFECT
the natural frequency.

Decreasing the moment
of inertia I of the wheel will
INCREASE or DECREASE or
NOT AFFECT the maximum
amplitude of theta.

Doubling the drive torque
to (2T) will DOUBLE or HALVE
the steady-state response of 𝜃(t).

Doubling the moment of
inertia to (2I) will change the nat-
ural frequency by a factor of 2 or
0.5 or 1.41 or 0.707.

Increasing the drive torque
will INCREASE or DECREASE
or NOT AFFECT the natural fre-
quency of the system.

10-30. A block of mass m is dropped from a
height h above a spring k, as shown in
Fig. P10.30. Beginning at the time of
impact (t = 0), the position x(t) of the
block satisfies the following second-
order differential equation and initial
conditions:

m ẍ(t) + k x(t) = m g, x(0) = 0, ẋ(0) =
√

2 g h.

(a) Determine the transient solution
xtran(t), and determine the fre-
quency of oscillation.

(b) Determine the steady-state solu-
tion xss(t).

m 

h
g

k
x(t)

t = 0 

Figure P10.30 Mass dropped on a spring.

(c) Determine the total solution x(t),
subject to the initial conditions.

(d) Mark each of the following state-
ments as true (T) or false (F):

Increasing the stiffness k will
increase the frequency of x(t).

Increasing the height h will
increase the frequency of x(t).

Increasing the mass m will
decrease the frequency of x(t).

Doubling the height h will
double the maximum value of x(t).

Doubling the mass m will
double the maximum value of x(t).

10-31. At time t = 0 s, a diver of mass m jump-
ing from a platform of height h (in
meters) impacts a diving board with an
initial velocity vo =

√
2gh, as shown in

Fig. P10.31.

y(t)
L

EIh

g

Figure P10.31 A diver impacting a diving board.

If the diving board is modeled as a
cantilever beam of length L and flex-
ural rigidity EI, its deflection satisfies
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the following second-order differential
equation and initial conditions:

mÿ + 3EI
L3

y(t) = mg, y(0) = 0, ẏ(0) =
√

2gh.

Determine the solution for the deflec-
tion y(t) as follows:
(a) Find the transient solution ytran(t).
(b) Find the steady-state solution

yss(t).
(c) Find the total solution, subject to

the initial conditions.
(d) Evaluate the total solution for the

case of h = 0 (i.e., where the diver
suddenly steps onto the end of the
diving board, but with zero initial
velocity). In this case, how does
the maximum deflection compare
to the static deflection, 𝛿 = mgL3

3EI
?

10-32. Repeat parts (a)–(c) of problem
P10-30 if m = 1 kg, k = 30 N/m, and
g = 9.8 m/s2.

10-33. The vertical deflection of a spring-mass
system can be measured from either
the equilibrium configuration of the
spring, y1(t), or the undeformed con-
figuration of the spring, y2(t). As illus-
trated in Fig. P10.33, the difference
between the two is the static deflection,
𝛿 = mg∕k:

Equilibrium
configuration:

g

k

Undeformed
configuration:

k

δ = mg/k

m

y1(t)

m

y2(t)

Figure P10.33 Equilibrium and undeformed
configurations of a spring–mass system.

If the mass is displaced from the
equilibrium configuration, the deflec-
tion y1(t) satisfies the following

second-order differential equation,
where the RHS is zero:

mÿ1 + ky1(t) = 0.

However, if the mass is applied sud-
denly to the undeformed configuration
of the spring, the deflection y2(t) satis-
fies the following differential equation,
where the RHS is nonzero:

mÿ2 + ky2(t) = mg.

(a) Determine the transient solution
for y2(t). How does this differ from
the transient solution for y1(t)?

(b) Determine the steady-state solu-
tion for y2(t). How does this differ
from the steady-state solution for
y1(t)?

(c) Determine the total solution for
y2(t), subject to the initial condi-
tions y2(0) = ẏ2(0) = 0.

(d) Given your solution to part (c),
determine both the maximum and
minimum values of the deflec-
tion y2(t). How does the maximum
deflection compare to the static
deflection 𝛿?

10-34. Under static loading by a weight of
mass m, a rod of length L and axial
rigidity AE deforms by an amount

𝛿 =
mgL
AE

, where g is the acceleration
due to gravity. However, if the mass
is applied suddenly (dynamic loading),
vibration of the mass will ensue. If
the mass m is initially at rest, the
deflection x(t) satisfies the following
second-order differential equation and
initial conditions:

m ẍ(t) + AE
L

x(t) = mg, x(0) = 0, ẋ(0) = 0.

(a) Determine the transient solution
xtran(t).

(b) Determine the steady-state solu-
tion xss(t).

(c) Determine the total solution for
x(t), subject to the given initial
conditions.
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Static loading: Dynamic loading:
m

δ =
mgL 

AE

g

m 

AE L

x(t)

AE L

Figure P10.34 Rod under axial loading by a weight
of mass m.

(d) Calculate the maximum value
of the deflection x(t). How does
your result compare to the static
deflection 𝛿?

10-35. Under quasi-static loading by a twist-
ing moment Mo, a rod of length L
and torsional rigidity JG deforms by
an amount 𝜃o = MoL∕JG, as shown in
Fig. P10.35. However, if the moment
is applied suddenly (dynamic loading),
rotational vibration of the rod will
ensue:
The angle of twist 𝜃(t) satisfies the
following second-order differential
equation and initial conditions where
I is the mass moment of inertia of
the disk:

I�̈� + JG
L

𝜃(t) = Mo, 𝜃(0) = �̇�(0) = 0.

θo

JGL

Mo

I

Figure P10.35 Torsional vibration of a rod.

(a) Determine the transient solution
𝜃tran(t). What is the natural fre-
quency of the system?

(b) Determine the steady-state solu-
tion 𝜃ss(t).

(c) Determine the total solution 𝜃(t),
subject to the initial conditions.

(d) Given your solution to part (c),
determine the maximum value of
the angle of twist. How does this
maximum twist compare to the
static twist 𝜃o?

10-36. An LC circuit is subjected to a con-
stant voltage source Vs that is sud-
denly applied at time t = 0. The
current i(t) satisfies the following
second-order differential equation and
initial conditions:

LC
d2i(t)
dt2

+ i(t) = 0, i(0) = 0, di
dt
(0) =

Vs

L
.

(a) Determine the total solution for
i(t), subject to the given initial con-
ditions.

(b) Plot one-half cycle of the current
i(t), and clearly label both its max-
imum value and the time it takes
to get there.

(c) Mark each of the following state-
ments as true (T) or false (F):

Increasing the capacitance C will
increase the frequency of i(t).

Increasing the inductance L will
increase the frequency of i(t).

Increasing the capacitance C will
increase the amplitude of i(t).

Increasing the voltage Vs will
increase the amplitude of i(t).

Increasing the inductance L will
increase the amplitude of i(t).

vs

t = 0 
L

i(t)

C+
−

Figure P10.36 LC circuit for problem P10-36.
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10-37. An input voltage vin(t) is applied
to the OP-AMP circuit shown in
Fig. P10.37. The output voltage vo(t)
satisfies the following second-order
differential equation and initial condi-
tions:

10−4 d2vo(t)
dt2

+ vo(t) = −vin(t),

subject to the initial condition vo(0) = 0
and v̇o(0) = 0.
(a) Determine the transient solution

vtran(t). What is the natural fre-
quency of the response?

(b) If the input is sinusoidal at vin(t) =
10 sin(10t) volts, determine the
steady-state solution vss(t).

(c) Plot the steady-state response of
the system.

(d) Determine the total solution vo(t),
subject to the initial conditions.

10 kΩ

10 kΩ
10 kΩ

–

–
–

+

+
+

10 kΩ

10 kΩ1μF

+vcc
+vcc

vo(t)

vin(t)
+vcc

–vcc

–vcc
–vcc

1μF

Figure P10.37 OP-AMP circuit for
problem P10-37.

10-38. An LC circuit is subjected to input
voltage vin that is suddenly applied at
time t = 0.

vin(t) v(t)

L

C
+

+
− −

Figure P10.38 LC circuit for problem P10-38.

The voltage v(t) satisfies the following
second-order differential equation and
initial conditions:

LC
d2v(t)

dt2
+ v(t) = vin, v(0) = 0, v̇(0) = 0.

(a) Determine the transient solution
vtran(t). What is the frequency of
the response?

(b) If vin = 10.0 V, determine the
steady-state solution vss(t).

(c) Determine the total solution for
v(t), subject to the given initial
conditions.

(d) Calculate the maximum value of
v(t). Does your result depend on
the values of L and C?

10-39. A biomedical engineer is designing a
resistive training device to strengthen
the latissimus dorsi muscle. The task
can be represented as a spring–mass
system, as shown in Fig. 10.28. The
displacement y(t) of the exercise bar
satisfies the second-order differential
equation

m ÿ(t) + k y(t) = f (t),

subject to the initial condition y(0) =
0.01 m and ẏ(0) = 0 m/s.
(a) Determine the transient solution

ytran(t).
(b) Determine the steady-state solu-

tion yss(t) for the applied force
shown in Fig. P10.39.

(c) Determine the total solution, sub-
ject to the initial conditions.

0.1

0
0 1 2

f(t), N

t, s

Figure P10.39 Applied force for resistive training
device for problem P10-39.

10-40. Repeat parts (a)–(c) of problem
P10-38 if L = 40 mH, C = 400 𝜇F, and
vin = 10 sin(100 t) V.
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Engineering

CHAPTER
11

11.1 INTRODUCTION

There are a multitude of uses for probability and statistics in engineering. At the
very least, the inherent nature of variability in engineering experimentation requires
a working knowledge of statistics to help clearly and accurately describe the physical
phenomena being tested. Applications of engineering statistics include quality con-
trol, transportation, logistics, reliability, factorial experimentation, stochastic design,
and probabilistic modeling, among others. While many of these applications are asso-
ciated with the field of Industrial and Systems Engineering, virtually all engineering
disciplines require a formal class in statistics. As such, the treatment here is simply a
brief introduction to help motivate some of the foundational applications that engi-
neering students will see as they move forward in their intended degree programs.

11.2 QUALITY CONTROL PROBABILITY IN MANUFACTURING

An inspector examines a batch of 100 turbine engine blades. It is found that 2 have
major defects, 5 have minor defects, and the rest have no defects at all. As such, the
probabilities of randomly selecting a blade with major defects, minor defects, or no
defects can be reasoned as follows:

When randomly selecting a single blade, there are 100 equally likely selections
that can result in 1 of 3 possible outcomes. The probability of selecting a blade with
a major defect is 2 out of 100 or 2/100 = 0.02 = 2%. Similarly, the probability of
selecting a blade with minor defects is 5 out of 100 or 5/100 = 0.05 = 5%. Lastly, the
probability of selecting a single blade free from defects is 93 out of 100 or 93/100 =
0.93 = 93%. Note that the individual probabilities of all possible outcomes add up to
1 or 100%:

P(major defects) + P(minor defects) + P(no defects) = 100%

0.02 + 0.05 + 0.93 = 1.00.

In general,
n∑

i=1

Pi = 1, (11.1)

where Pi are the individual probabilities of n possible outcomes. As will be seen in
the examples that follow, this is a widely employed tenet in engineering statistics.

409
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Example
11-1

A metal 3-D printer can build mechanical testing specimens with varying mechan-
ical properties. Suppose a batch of specimens is created as follows:

High Stiffness Low Stiffness

High Strength 4 13

Low Strength 8 5

Determine the probability of randomly selecting a specimen with:

(a) High Stiffness. (e) Both High Strength and High Stiffness.

(b) Low Stiffness. (f) Both High Strength and Low Stiffness.

(c) High Strength. (g) Both Low Strength and High Stiffness.

(d) Low Strength. (h) Both Low Strength and Low Stiffness.

Solution (a) As shown in the table, the total number of specimens is 4 + 13 + 8 + 5 = 30. The
probability of selecting a specimen with High Stiffness is obtained by summing
the data in the first column and dividing by the total number of specimens:
4+8
30

= 12
30

= 0.40 = 40%.

(b) Likewise, the probability of selecting a specimen with Low Stiffness is obtained

from the second column as 13+5
30

= 18
30

= 0.60 = 60%. Note that since all possible
selections must have either High Stiffness or Low Stiffness, their individual
probabilities add up to 1 (0.40 + 0.60 = 1.0, or 40% + 60% =100%).

(c) Likewise, the probability of selecting a specimen with High Strength is 4+13
30

=
17
30

= 0.5667 = 56.7%.

(d) Since all possible selections must have either High Strength or Low Strength,
their individual probabilities must add up to 1. Thus, given the solution to
part (c), the probability of selecting a specimen with Low Strength is 1 − 0.5667
= 0.4333 = 43.3%. Note this can be independently verified by summing the
entries in the second row and dividing by the total as 8+5

30
= 13

30
= 0.4333 =

43.3%
(e) The probability of selecting a specimen with both High Strength and High

Stiffness is obtained from the first table entry as 4
30

= 0.1333 = 13.3%.

(f) Similarly, the probability of selecting a specimen with both High Strength and
Low Stiffness is 13

30
= 0.4333 = 43.3%.

(g) Likewise, the probability of selecting a specimen with both Low Strength and
High Stiffness is 8

30
= 0.2667 = 26.7%.

(h) Finally, the probability of selecting a specimen with both Low Strength and
Low Stiffness is 5

30
= 0.1667 = 16.7%. Note that since the sum of the individual

probabilities in parts (e)–(g) must add to 1, this could have been independently
calculated as 1 − 0.1333 − 0.4333 − 0.2667 = 0.1667 = 16.7%.



Trim Size: 8in x 10in Rattan2e c11.tex V1 - 02/17/2021 7:46pm Page 411�

� �

�

11.2 Quality Control Probability in Manufacturing 411

Continuing our discussion of quality control, suppose it is determined that when
manufacturing a batch of turbine engine blades, 2% will be defective. If an inspec-
tor randomly selects four samples from a large population of manufactured blades,
what is the probability that none of the selected blades in the sample is defective?

First, consider what the probability would be if the sample size were a single
blade instead of 4. In this case, the probability of no defects when 2% are defective
would be 98%, i.e.,

P(1 not defective) = 1 − P(1 defective) = 1 − 0.02 = 0.98 = 98%.

This probability would apply to each of the blades in the entire population, assum-
ing that the selection process is independent from one blade to the next. This means
that the result of a blade selection within the sample does not influence the result of
the subsequent selections. The more blades chosen to begin with (i.e., the larger
the sample), the smaller the chance of seeing no defects. As such, another widely
employed tenet of engineering statistics is that the probability of n independent
events all randomly occurring is obtained by multiplying the individual probabili-
ties of them each occurring separately,

P = P1 P2 P3 ...Pn. (11.2)

Therefore, the probability that all four sampled blades are not defective is found
by multiplying their individual probabilities:

P(all four not defective) = P(one not defective)4 = 0.98 ∗ 0.98 ∗ 0.98 ∗ 0.98 = 0.984

= 0.92236 = 92.2%.

As the sample size is increased, this percentage would decrease exponentially and
ultimately approach zero.

Consider now the probability that at least one of the blades in the sample of
four is defective. The “at least one” criterion does not differentiate between one,
two, three or even all four blades being defective, but includes all of these instances.
Instead of calculating the probability of each of these instances and summing the
result,1 it is easier to use the probability of all four not defective and simply subtract
from 1.

As calculated previously, P(all four not defective) = 0.92236. Therefore, the
probability of at least one being defective is

P(at least one defective) = 1 − P(all four not defective) = 1 − 0.92236 = 0.07764

= 7.76%.

1This would require knowledge of combinations and permutations, the treatment of
which is beyond the scope of this text. Such knowledge would also be required to find
at least n or exactly n defective parts, where n is any number greater than 1.
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11.3 MANUFACTURING TOLERANCE OF RESISTORS

Consider a company that manufactures resistors. A quality engineer samples twenty
100 Ω resistors that have a gold tolerance band (±5%) and measures the resistance
value of each one as shown in Table 11.1.

TABLE 11.1 Table of resistance values in Ohms.

100.5 94.4 100.1 99.8 98.3 100 100.1 101.2 102 98.5

105 97.2 98.0 101 102.1 96.0 95.5 97.5 99.0 100

Based on these measurements, what is the average resistance?
The average, or mean, value is calculated by adding all 20 resistance values

together and dividing by the total number of resistors:

R =

n∑
i=1

Ri

n
or

R = 100.5 + 94.4 + · · · + 99.0 + 100
20

= 1986.2
20

= 99.31 = 99.3 Ω.

While the nominal value of these resistors is 100 Ω, the as-manufactured mean value
varies based on how they are made.

Based on these measurements, what is the median resistance?

The median, or middle, value is calculated by sorting all values from lowest to high-
est and finding the one exactly in the middle. Hence, the median value divides the
population exactly in half, with 50% greater and 50% less than the median value.
The sorted values are shown in Table 11.2.

TABLE 11.2 Table of sorted resistance values in Ohms.

94.4 95.5 96.0 97.2 97.5 98.0 98.3 98.5 99.0 99.8

100 100 100.1 100.1 100.5 101 101.2 102 102.1 105

As the data set here is comprised of an even number of values, the exact middle
is found by averaging the two middlemost values. In this case, the median is calcu-
lated as

99.8 + 100
2

= 99.9 Ω.

For this particular data set, the median value of 99.9 is very close to the mean value
of 99.3. However, the median value is more appropriately used to indicate the center
of the data when the population is skewed one way or the other, in which case the
mean may not be particularly close to the middle.
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For example, income levels of a neighborhood can vary widely. The mean value
may not be a good indicator of the neighborhood’s typical income level if most resi-
dents make less than $50,000 and a millionaire happens to move in. Outliers such as
this can cause the mean to be pulled from the center.

A good way to describe the variability of data about the mean is with its sample
standard deviation, defined in equation (11.3) as

S =

√√√√√ n∑
i=1

(xi − x)2

n − 1
, (11.3)

where xi are the individual data points, x is the mean value, and n is the sample size.
Substituting the corresponding xi values for the resistors considered here gives

S =
√

(100.5 − 99.31)2 + · · · + (100 − 99.31)2
20 − 1

= 2.4971 = 2.50 Ω.

The above standard deviation of 2.5 Ω turns out to be 2.5% of the nominal value
of 100 Ω, or exactly half of the 5% manufacturing tolerance. In general, smaller
standard deviations indicate less variability about the mean, while larger standard
deviations indicate a greater spread of the data.

Example
11-2

A set of 30 tensile specimens were tested and the resulting values of the yield
strength (in ksi) are tabulated in Table 11.3.

TABLE 11.3 Table of tensile specimen yield strength in ksi.
40926 40593 39840 43548 38448 40313 40017 39055 38280 41546
40919 38694 38968 39277 42009 39072 39934 39930 40829 40491
40434 39253 40498 40971 38546 40768 44424 44025 38385 40978

Using this data set, calculate:

(a) Mean

(b) Median

(c) Standard deviation

Solution (a) The mean can be calculated by

𝜎y = 40926 + 40593 + · · · + 38385 + 40978
30

= 40366 ksi.

(b) The median can be calculated by first reordering the data set in Table 11.3 from
least to greatest:

38280 38385 38448 38546 38694 38968 39055 39072 39253 39277

39840 39930 39934 40017 40313 40434 40491 40498 40593 40768

40829 40919 40926 40971 40978 41546 42009 43548 44025 44424
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As this data set has an even number of entries, the average of the two middle-
most values is

Median = 40313 + 40434
2

= 40373.5 ksi.

In this case, the median is again notably close to the mean.

(c) The standard deviation can be calculated as

S𝜎y
=
√

(40926 − 40366)2 + · · · + (40978 − 40366)2
30 − 1

= 1583.1 ksi.

The calculated standard deviation of 1581 ksi is roughly 4% of the mean value,
indicating a bit more spread in this data than that for the resistors previously
discussed.

11.4 PROBABILITY OF ACCEPTING/REJECTING
MANUFACTURED RESISTORS

The mean and standard deviation can be used to represent the variation of a contin-
uously random variable and describe the probability distribution of the associated
population. There are several different types of probability distributions, or probabil-
ity density functions (PDFs), the most common of which is the normal distribution.
Sometimes referred to as a “bell curve” due to its shape, the normal distribution is
the most likely distribution of truly random data, and is hence widely used in engi-
neering statistics. For any given data sample, the equation for the normal distribution
curve (or normal PDF) is given by

f (x) = 1

S
√

2𝜋
e

[
− 1

2

(
x−x

S

)2
]
, (11.4)

where x and S are the sample mean and standard deviation, respectively.2 The normal
PDF is centered about the mean, and is shown with both a large and small standard
deviation in Fig. 11.1.

The normal distribution is termed a probability density function (PDF) because
the area under the curve represents the probability of a random value of x falling
anywhere in the range −∞ ≤ x ≤ ∞, and is therefore equal to 1 (or 100%):

∫

∞

-∞
f (x)dx =

∫

∞

−∞

1

S
√

2𝜋
e

[
− 1

2

(
x−x

S

)2
]
dx = 1. (11.5)

As such, partial areas under the curve can be used to determine the probability of a
random value of any data point or event falling within any given range of values.

For example, using the sample mean and standard deviation of the resistors from
Section 11.3, one can determine the probability of rejecting resistors that have values
greater than 105 Ω (i.e., that fall outside the upper gold tolerance band of +5%).

2Should the sample mean and standard deviation be insufficient, the full population mean
and standard deviation can be used, denoted as 𝜇 and �̂�, respectively.
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(a) (b)

Figure 11.1 Normal distribution curve with (a) large standard deviation or (b) small standard
deviation.

This probability is the area under the PDF to the right of the given target value
and denoted as P(R > 105). As shown in Fig. 11.2, this can be found by substituting
x = 99.31 and S = 2.497 and integrating the corresponding f (x) from 105 to ∞, which
gives

P(R > 105) =
∫

∞

105

1

2.497
√

2𝜋
e

[
− 1

2

(
x−99.31

2.497

)2
]
dx = 0.01134 = 1.13%.

99.31 105

Figure 11.2 P(R > 105) for a given resistor.

Therefore, there is a 1.13% chance that a resistor will be rejected from a large
batch of resistors for exceeding the upper manufacturing tolerance of +5%. This is
equivalent to saying that 113 out of every 10,000 resistors will have to be discarded,
which can subsequently be included in the company’s economic analysis of its man-
ufacturing operations. It is easy to see the vital role that engineering statistics can
play on the business side of engineering.

In practice, rather than performing the integral, tabulated values for the prob-
ability (area under the PDF) for any mean and standard deviation can be used.
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Introducing a change of variable

z = x − x
S

(11.6)

and substituting into equation (11.4) gives

f (z) = 1√
2𝜋

e
(
− 1

2 z2
)
. (11.7)

Termed the Standardized Normal PDF, equation (11.7) is centered about a mean of
zero with a standard deviation of 1. The area under the f (z) curve (or the probability
of z falling below a specified value) is given in Table 11.4.3

TABLE 11.4 z-table.
(a) Negative (b)  Positive

Z Table

Find values on the left of the mean in
this negative Z score table. Table entries for
z represent the area under the bell curve to
the left of z. Negative scores in the z-table
correspond to the values which are less
than the mean.

Find values on the right of the mean in
this z-table. Table entries for z represent
the area under the bell curve to the left of z.
Positive scores in the Z-table correspond to
the values which are greater than the mean.Table entry

z z

Table entry

z

–3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
.0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
.0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
.0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
.0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
.0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
.0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
.0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
.0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
.0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
.0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
.0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
.0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
.0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
.0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
.0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
.0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
.0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
.0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
.0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
.0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
.0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
.1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
.1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
.1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
.1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
.2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
.2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
.2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
.3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
.3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
.3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
.4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
.4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
.5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

–3.3
–3.2
–3.1
–3.0
–2.9
–2.8
–2.7
–2.6
–2.5
–2.4
–2.3
–2.2
–2.1
–2.0
–1.9
–1.8
–1.7
–1.6
–1.5
–1.4
–1.3
–1.2
–1.1
–1.0
–0.9
–0.8
–0.7
–0.6
–0.5
–0.4
–0.3
–0.2
–0.1
–0.0

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09 z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4

.5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

.8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

.8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

.8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

.9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

.9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

.9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

.9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

.9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

.9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

.9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

.9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

.9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

.9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

.9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

.9918

.9938

.9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
.9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
.9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

.9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

.9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

.9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

.9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

.9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993

.9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995

.9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997

.9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

In keeping with our prior example, the results of Table 11.4 can be used to determine
the probability of rejecting resistors that have values greater than 105 Ω (i.e., the
upper gold tolerance band of 5%), without actually evaluating the integral.

Substituting the mean, standard deviation, and target value into equation (11.6),
the corresponding z-value is

z105 = 105 − 99.31
2.497

= 2.279.

3http://www.z-table.com/.
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Since z105 is positive, refer to Table 11.4(b). The leftmost column represents the ones
and tenths places, while the uppermost row represents the hundredths place of z.
As such, the value z105 = 2.279 corresponds to a probability value exactly 90% of
the way between that for z = 2.27 and z = 2.28. Taking the corresponding tabulated
probabilities (areas) of 0.9884 and 0.9887, this can be determined by linear interpo-
lation as

P2.279 = 0.9887 − 0.9884
2.28 − 2.27

(2.279 − 2.27) + 0.9884 = 0.98867.

0 z105

Figure 11.3 P(R > 105) for a given resistor.

The calculated value of 0.98867 is the fraction of the population that would be less
than the target value (shaded portion in Fig. 11.3). Since the problem asked for the
probability of rejection, or the area greater than the target value, simply subtract the
probability from 1:

P(R > 105) = 1 − 0.98867 = 0.0113.

Thus, 1.13% of the resistors would be rejected for exceeding the upper manufacturing
tolerance, which is exactly the same answer previously obtained by evaluating the
integral.

In order to conduct a true economic analysis of its gold tolerance band (±5%),
the manufacturer would also need to determine the probability of rejecting resistors
that have values less than 95 Ω. (i.e., the lower gold tolerance band of −5%).

Calculating the z-value for the target resistance value of 95 gives

z95 = 95 − 99.31
2.497

= −1.726.

Since the value of z is negative, refer to Table 11.4(a). This value is exactly 60% of
the way between −1.72 and −1.73, with corresponding tabulated probabilities 0.0427
and 0.0418. The probability for −1.726 can be calculated by linear interpolation as

P−1.726 = 0.0418 − 0.0427
−1.73 − (−1.72)

(−1.726 − (−1.72)) + 0.0427 = 0.04216.

Therefore, P(R < 95) = 0.0422, or 4.22% of resistors will be less than 95 Ω.
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0z95

Figure 11.4 P(R < 95) for a given resistor.

Note that subtracting from 1 is not required in this case, as rejections occur for
values less than the target value (shaded portion in Fig. 11.4), and Table 11.4 already
shows the areas to the left of the target value.

To complete the economic analysis, the probability of accepting resistors with
values that fall within the given tolerance band of ±5% is represented by the area
in between the two target values z105 and z95. This can be found by subtracting the
corresponding shaded areas, as shown in Fig. 11.5.

z105 z95 z105z950 00

Figure 11.5 P(95 < R < 105) for a given resistor.

The area to the left of the upper target value 105 was found to be 0.98867 and the area
to the left of the lower target value 95 was found to be 0.0422. Therefore, P(95 < R <

105) = 0.98867 − 0.0422 = 0.9465 = 94.7%, which is the percent of resistors accepted.
The percent rejected can be obtained by simply subtracting from 1, or 1 − 0.9465
= 0.0535 = 5.35% rejected. Note that the latter could have also been calculated by
simply adding the previously calculated percent rejected for each target value, or
P(R > 105) + P(R < 95) = 0.0113 + 0.0422 = 0.0535 = 5.35% rejected.

In summary, if the sample mean and standard deviation are assumed to accu-
rately represent those of the overall population, and if the overall population is
assumed to be normally distributed, then there is a 5.35% chance that a resistor
would fall outside of the ±5% gold band tolerance range. If the manufacturing vari-
ations are truly random, then the accuracy of these assumptions will increase with
the size of both the sample and the overall manufactured population.
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Example
11-3

Consider a wind load applied to the wing of an aircraft. In general, this load
remains relatively constant in normal flight, but occasionally gusts will cause a
larger, potentially dangerous overload.

If the force applied to the wing is normally distributed with a mean of F = 1500
N and a standard deviation of S = 150 N,

(a) Determine the probability that the wing would experience a force greater than
the failure load of 1900 N (i.e., P(F > 1900).

(b) Determine the corresponding reliability of the wing.

Solution (a) First, calculate the z-value corresponding to 1900 N:

z1900 = 1900 − 1500
150

= 2.667.

From Table 11.4, this value is between 2.66 and 2.67 with corresponding prob-
abilities 0.9961 and 0.9962. As such, the probability for 2.667 lies 70% of the
way in between, which can be calculated by linear interpolation as

P2.667 = 0.9962 − 0.9961
2.67 − 2.66

(2.667 − 2.66) + 0.9961 = 0.99617.

This is the area to the left of the target value z1900. Therefore, the probability
of a load greater than 1900 N is obtained by subtracting from 1, or
P(F > 1900) = 1 − 0.99617= 0.00383 = 0.383%.

(b) In general, the reliability R is the probability that something will NOT
fail, which can be obtained by simply subtracting the probability of failure
from 1:

R = P(not failure) = 1 − P(failure).

In this case,

R = P(not failure) = P(F < 1900),

which has already been calculated as the area to the left of the target value
z1900 as 0.99617, or R = 99.617%. Note this could have also been calculated by
subtracting the probability of failure from 1 as

R = 1 − P(F > 1900)) = 1 − 0.00383,

or

R = 100% − 0.383% = 99.617%.
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PROBLEMS

11-1. Ultrasonic inspection of an aircraft
component in Fig. P11.1 reveals that out
of 500 parts inspected, 13 had minor
defects, 5 had major defects, and the rest
were defect free. If a component is ran-
domly inspected,
(a) Determine the probability of select-

ing a component that has minor
defects.

(b) Determine the probability of select-
ing a component with defects.

(c) Determine the probability of select-
ing a component free of defects.

Figure P11.1 Ultrasonic inspection of an aircraft.

11-2. A gauge jig is used to determine
if a prosthetic hip implant in Fig.
P11.2 meets manufacturing standards
in length, width, and concentricity. It
is found that in a large batch of 1260
implants, 21 were not concentric, 5 had
lengths too long, and 11 had widths to
narrow. If a hip implant is randomly
selected,
(a) Determine the probability of select-

ing an implant that is not concen-
tric.

(b) Determine the probability of select-
ing an implant that is too narrow.

(c) Determine the probability of select-
ing an implant that meets all
requirements.

(d) Determine the probability of select-
ing an implant that meets no
requirements.

Figure P11.2 Prosthetic hip implant.

11-3. An electrical switch as shown in Fig.
P11.3 can be tested with a multime-
ter for faults. A total of 250 switches
are tested and 223 are found to oper-
ate correctly. If a switch is randomly
selected,
(a) Determine the probability of select-

ing a faulty switch.
(b) Determine the probability of

selecting a switch that operates
correctly.

Figure P11.3 Electrical switch tested by a
multimeter.

11-4. For the purpose of tuning the sus-
pension of a high-performance vehicle
shown in Fig. P11.4, a load cell moni-
tors the force applied to an a-arm every
second. During 10 minutes of use on
a track, it was found that the load
exceeded 50% of the safe limit 210
times, 75% of the safe limit 82 times,
95% of the safe limit 11 times, and 100%
of the safe limit 3 times. If a reading is
taken every second,
(a) Determine the probability of oper-

ating below 80% of the safe limit.
(b) Determine the probability of oper-

ating above 50% of the safe limit.
(c) Determine the probability of oper-

ating between 60% and 100% of
the safe limit.
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(d) Determine the probability of
encountering a load over 100% of
the safe limit.

Figure P11.4 Tuning of performance suspension
on a track.

11-5. A metal 3-D printer can build mechan-
ical testing specimens with varying
mechanical properties. A batch of spec-
imens with high/low fracture toughness
KIc and yield strength Sy are created as
follows:

High Sy Low Sy
High KIc 12 16
Low KIc 21 7

If a specimen is randomly selected,
(a) Determine the probability of select-

ing a specimen with high fracture
toughness.

(b) Determine the probability of select-
ing a specimen with low yield
strength.

(c) Determine the probability of select-
ing a specimen with both low KIc
and low Sy.

(d) Of those specimens with high KIc,
what is the probability of selecting
one with low Sy?

11-6. A bolt manufacturing company has a
batch mix-up where two types of bolts
with two different lengths are acciden-
tally mixed in a large shipping bin.

Short Long
Carriage 212 89
Hex 181 78

If a bolt is randomly selected,
(a) Determine the probability of select-

ing a long carriage bolt.
(b) Determine the probability of select-

ing a short hex bolt.

(c) Determine the probability of select-
ing a hex bolt.

(d) Of all the long bolts, what is the
probability of selecting a carriage
type bolt?

11-7. A rotating axle shaft uses ball bearings
shown in Fig. P11.7 at each end. If the
probability of failure of a single bear-
ing is 0.5%, determine the reliability of
using two bearings on the axle.

Figure P11.7 Ball bearing reliability.

11-8. A circuit has three systems working
in series with reliabilities of R1 = 0.97,
R2 = 0.85, and R3 = 0.99 as shown in
Fig. P11.8. If any of these systems fails,
the circuit fails. What is the overall reli-
ability of the system?

R1 R2 R3

Figure P11.8 Circuit component reliability in
series.

11-9. Shown in Fig. P11.9, a large batch of
CPU heat sinks is found to have 3%
defective. If an inspector selects 5 at ran-
dom:
(a) Determine the probability that

none of the heat sinks is defective.
(b) Determine the probability that at

least one of the five is defective.

Figure P11.9 CPU heat sink.
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11-10. A large batch of transistors as shown
in Fig. P11.10 is found to have 1%
defective. If an inspector selects 10 at
random:
(a) Determine the probability that

none of the heat sinks is defective.
(b) Determine the probability that at

least 1 of the 10 is defective.

Figure P11.10 Three prong transistor.

11-11. The deflection of a rocker arm mak-
ing contact with a cam shaft is mea-
sured and tabulated below. Determine
the mean, median, and standard devia-
tion of the data set.

Deflection (mm)
1.2 1.4
0.97 1.1
0.98 1.2
1.3 1.4
0.97 0.96
1.1 1.0

Does the mean or median better reflect
the typical deflection? Explain.

11-12. The number of cycles to failure for a
given load level on an aluminum spec-
imen is tabulated below. Determine the
mean, median, and standard deviation
of the data set.

N (cycle)
100E6 110E6
900E6 125E6
98E6 112E6

109E6 707E6
99E6 137E6

Does the mean or median better
reflect the expected number of cycles?
Explain.

11-13. To determine the tolerance level of a
capacitor, a batch of capacitance mea-
surements is tabulated below. Deter-
mine the mean, median, and standard
deviation of the data set.

C (Farads)
0.75 0.88
0.79 0.89
0.65 0.88
0.77 0.81
0.81 0.82
0.77 0.78
0.80 0.81

Does the mean or median better reflect
the expected capacitance? Explain.

11-14. A biomedical engineer tabulates the
systolic blood pressure (BP) for the
average person. Determine the mean,
median, and standard deviation of the
data set.

BP (mm Hg)
118 121
110 112
77 81

105 107
145 95
120 128
117 115
121 123

Does the mean or median better
reflect the typical blood pressure?
Explain.

11-15. In a chemical mixture, the molar con-
centration is monitored every hour
to ensure consistency. Determine the
mean, median, and standard deviation
of the data set.
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Molarity (M)
5 4

11 3
2 13
8 7
6 9
5 4
6 5
5 8
6 9
7 8

Does the mean or median better reflect
the typical molarity? Explain.

11-16. The battery temperature in a self-
driving vehicle is monitored and deter-
mined to be normally distributed with
a mean of 40 ∘C and a standard devia-
tion of 5.4 ∘C. What is the probability
that the temperature of the battery in
Fig. P11.16 will be above 32 ∘C?

Figure P11.16 Battery temperature in a
self-driving vehicle.

11-17. The ultimate tensile strength of a batch
of carbon fiber booms used in a hex-
acopter shown in Fig. P11.17 is nor-
mally distributed with a mean of 503
ksi and a standard deviation of 8.9 ksi.
Determine the probability of randomly
selecting a boom with a strength above
515 ksi.

Figure P11.17 Ultimate tensile strength
distribution of a drone boom.

11-18. The diameter of a shaft in Fig. P11.18
used in a press-fit assembly is manu-
factured in large batches with mean of
d = 1.5 in. and standard deviation
of Sd = 0.05 in. Assuming a normal
distribution, determine the probability
that the diameter would be larger than
1.6 in.

Figure P11.18 Diameter of the shaft in a press-fit
assembly.

11-19. The speed of a projectile in Fig. P11.19
is dependent on the amount of explo-
sive powder loaded into the casing. An
automated loader produces an amount
of powder with an average weight of
4.7 grains with a standard deviation of
0.15 grains. Assuming a normal distribu-
tion, determine the probability that the
amount of powder exceeds 4.4 grains.

Figure P11.19 Weight of powder in a projectile.
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11-20. The number of hours an LCD TV dis-
play in Fig. P11.20 is predicted to last
on average is about 60,000 hours. If
the standard deviation of this life is
2500 hours, determine the probability of
exceeding the extended warranty life of
67,000 hours. Assume the distribution
of the TV life is normal.

Figure P11.20 Life of an LCD TV.

11-21. A large crane shown in Fig. P11.21
unloads container ships that have hun-
dreds of shipments weighing on average
4.5 tons, with a standard deviation of
0.56 tons. Assuming a normal distribu-
tion of shipments, what is the probabil-
ity of a shipment having a load less than
6 tons?

Figure P11.21 Crane unloading from container
ships.

11-22. The component life of many appliances
show that failure occurs either very
early with few cycles (burn-in) or after
a long life. If a dishwasher pump in
Fig. P11.22 has an average life of 9 years
with a standard deviation of 8 months,
determine the probability that the dish-
washer fails in 7 years. You may assume
the life is normally distributed.

Figure P11.22 Dishwasher working life.

11-23. The capacitor shown in Fig. P11.23 is
manufactured in large batches and has
an average capacitance value of 25 𝜇F,
with a standard deviation 6.6 𝜇F. Deter-
mine the probability that the capaci-
tance is less than 23 𝜇F, assuming the
distribution is normal.

Figure P11.23 Capacitor manufactured in large
batches.

11-24. A biomedical engineer designing the
ergonomics of a pair of augmented
reality glasses states that the average
adult head diameter in Fig. P11.24 is
55 cm, with a standard deviation of
2.4 cm. Assuming the head diameter to
be normally distributed, determine the
probability that a consumer has a head
diameter less than 50 cm.
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Figure P11.24 Head diameter for AR glasses.

11-25. The average voltage applied to a typical
vehicle electrical system is 14.2 V. with a
standard deviation of 2.7 V. Determine
the probability of experiencing a lack of
voltage, or a value less than 10 V. You
may assume the voltage distribution is
normal.

Figure P11.25 Vehicle electrical system voltage.

11-26. The pH level of a particular component
lubricant should always be within ±3%
of the average value 4.2. If the standard
deviation is 0.36, determine the prob-
ability of having a sample within the
appropriate tolerance, assuming a nor-
mal distribution.

Figure P11.26 pH level of gear oil lubricant.

11-27. As shown in Fig. P11.27, the power sup-
plied to produce a radar signal that
accurately captures distance must be
regulated. Too much power and the sig-
nal becomes noisy while not enough
produces an inaccurate picture. If the
average power is 1500 W with a stan-
dard deviation of 134 W, determine
the probability of obtaining an accu-
rate picture within ±10% of the aver-
age power. Assume the distribution is
normal.

Figure P11.27 Power level for radar detection.

11-28. A unilateral tolerance indicates some
deviation in one direction from the
mean. If the average length of a sup-
port bracket in Fig. P11.28 is 18 in. with
a standard deviation of 0.75 in., deter-
mine the probability of manufacturing
supports between 17.1 and the mean.
You may assume the dimensions are
normally distributed.

Figure P11.28 Tolerance of a support bracket.
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11-29. The applied stress during cyclic loading
of an inlet compressor blade as shown
in Fig. P11.29 should remain between 16
ksi and 19 ksi. If the average stress is
20 ksi with a standard deviation of 6.2
ksi, what is the probability of remaining
within the permitted range? Assume the
applied stress is normally distributed.

Figure P11.29 Compressor blade cyclical loading.

11-30. Solar panels as shown in Fig. P11.30 can
offset the use of fossil fuels as a source
of energy. The average amount of sun-
light per day for a solar panel is 7.3
hours, with a standard deviation of 3.2
hours. Assuming a normal distribution
of sunlight, determine the probability of
having sunlight between 3 and 11 hours
a day.

Figure P11.30 Solar panel daylight hours.

11-31. A flashlight as shown in Fig. P11.31 is
manufactured to produce between 800
and 1100 lumens. If a batch of flashlights
has an average light output of 1000
lumens with a standard deviation of
150 lumens, determine the probability

of a flashlight having either less than
750 lumens (too dim) or more than
1300 lumens (decreased life). You may
assume the distribution is normal.

Figure P11.31 Flashlight lumen output.

11-32. The nominal diameter of a 3/8 in.
metric hex bolt shown in Fig. P11.32
must be ±5% to ensure proper thread
cutting. If the standard deviation is
0.05 in., determine the probability of
rejecting bolts that are outside the tol-
erance. If each bolt costs $0.07 to make,
how much money would be lost in a
batch of 10,000? Assume the distribu-
tion is normal.

Figure P11.32 Bolt diameter rejection.

11-33. The elastic stiffness of a batch of 3-D
printed nickel-based alloy spark plug
tips in Fig. P11.33 is normally dis-
tributed, with a mean of 220 GPa and
standard deviation 15.8 GPa. Deter-
mine the probability of finding a spec-
imen with a stiffness either below 200
GPa or above 250 GPa.

Figure P11.33 Nickel-based alloy stiffness.
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11-34. An industrial metal tubing bender
is used to mass produce motorcycle
frames shown in Fig. P11.34. If the ben-
der must hold a tolerance of ±2% above
the mean bend radius, determine the
percent rejected if the average bend
radius is 6 in. with a standard devia-
tion of 0.15 in. Assume the distribution
is normal.

Figure P11.34 Motorcycle frame tubing bender
tolerance.

11-35. Facial tracking software installed on a
security camera in Fig. P11.35 can pos-
itively identify employees from an aver-
age distance of 23 ft. If the subject is too
close or too far, the reliability decreases.
Assuming a normal distribution, deter-
mine the probability of being unable to
recognize a face either less than 10 ft
or more than 30 ft away, if the standard
deviation is 6.3 ft.

Figure P11.35 Facial recognition software
probability.

11-36. An inductor shown in Fig. P11.36 man-
ufactured in large batches has an induc-
tance value of 300 mH and a standard
deviation 12.1 mH. Determine the prob-
ability that the inductance is either less
than 260 mH or more than 315 mH,
assuming a normal distribution.

Figure P11.36 Manufactured inductor tolerance.

11-37. A spring shown in Fig. P11.37 with an
average stiffness of 250 N/m has been
found to cause a resonance response in a
machine indexer. If the springs are nor-
mally distributed with a standard devi-
ation of 7 N/m, what is the probability
that an installed spring will be safe (i.e.,
a stiffness less than 246 N/m or greater
than 253 N/m)?

Figure P11.37 Resonance due to spring stiffness.

11-38. The torque required to form a perma-
nent bolted connection must not be too
loose (or risk separation) nor overly
tight (as to over-deform the bolt). An
automated torque sensor is used to
tighten bolts to an average torque of
40 ft-lb, with a standard deviation of
2.1 ft-lb. Assuming a normal distribu-
tion, what percent of bolted connec-
tions will be rejected if the minimum
torque required is 38.5 ft-lb and maxi-
mum torque is 43 ft-lb?

Figure P11.38 Permanent bolted connection.

11-39. As shown in Fig. P11.39, laser
shot-peening produces compressive
stresses on the surfaces of metal parts.
If this process can produce stresses that
are normally distributed with a mean of
16 ksi and a standard deviation 3.7 ksi,
determine the probability that the stress
will be either less than 12 ksi or greater
than 19.2 ksi.
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Figure P11.39 Laser shot-peening of metallic
surfaces.

11-40. A robotic welding arm is used to join
frame components of a vehicle shown
in Fig. P11.40. The power settings pro-
duce an average temperature or 1200 ∘F,

near the melting point of aluminum. If
this temperature is normally distributed
with a standard deviation of 30 ∘F, deter-
mine the probability of a faulty joint
(i.e., T < 1150 ∘F or T > 1250 ∘F).

Figure P11.40 Welding of a vehicle frame.



Trim Size: 8in x 10in Rattan2e bansw.tex V1 - 02/10/2021 5:57pm Page 1�

� �

�
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Problems

Chapter 1

P1-1 k = 50 N/m

P1-3 (a) k = 50 lb/in, Fi = 50 lb

P1-5 (a) m = 8 courses/year, CHS = 2 courses
(c) t = 4.75 years

P1-7 (a) Se = 40 ksi, Sut = 80 ksi
Sa = −0.5 Sm + 40 ksi

P1-9 (a) a = 1/15 Ω-nm/∘C, 𝜌o = 41.7 Ω-nm

𝜌t =
1
15

T + 125
3

Ω-nm

P1-11 (a) Et = 500 MPa, 𝜎o = 365 MPa
𝜎(𝜀) = 500 𝜀 + 365 MPa

P1-13 (a) v(t) = 15 t m/s

(b) v(t) = 15 m/s

(c) v(t) = −15 t + 60 m/s

P1-15 (a) k = 0.556∘C∕∘F, To = −17.7∘C
TC = 0.556 TF − 17.7∘C

P1-17 (b) I = 1.5 A

P1-19 (a) R = 80 Ω, V = 8 V
I = (1∕80)VS − 0.1 A

P1-21 (a) ΔVo = 84 mV, S = −270.2 J/∘C
ΔV(T) = −1.4 T + 84 mV

P1-23 (a) R = 20 Ω, Vb = 1.6 V
vo = 3 vin − 8 V

P1-25 (a) k = −40 ft/s/in, vf = 10 ft/s
v = −40 I + 10 ft/s

(c) I = 0.25 in

P1-27 (a) S = 20 rpm/deg, No = 700 rpm
N(𝜙) = 20 𝜙 + 700 rpm

(c) 𝜙max = 65∘

P1-29 (a) F = 30 N

(b) V = 1.0 V

P1-31 (a) A(F) = 5 × 10−6 F

(c) A(200) = 1.0 mV

P1-33 (a) k = 0.25, 𝜏so = 207 MPa
𝜏s(𝜎s) = 0.25 𝜎s + 207 MPa

P1-35 (a) m = 13.8 × 10−3 ksi−1, b = −0.151
𝜀 = 13.8 × 10−3 𝜎 − 0.151

(b) Et = 72.7 ksi, 𝜎o = 11.0 ksi

P1-37 (a) ps = 40 psi, l = 4.0 in
p(x) = −10 x + 40 psi

P1-39 (a) a = −3.5∘F, b = 180∘ F
T(R) = −3.5 R + 180∘F

(c) R = −40

P-1
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P-2 Answers to Selected Problems

Chapter 2

P2-1 (a) I2 + 9 I − 10 = 0

(b) I = 1A or I = −10 A

P2-3 (a) 𝜙 = 50∘ or 𝜙 = 100∘

(b) 𝜙max = 75∘, Fmax = 225 N

(c) x−intercept: 𝜙 = 0∘ or 𝜙 = 150∘

P2-5 (a) t = 7, −1 s

(b) t = 3 s

P2-7 (a) t = 4, 9 s

(b) Drone does not reach 150 m

(c) t = 13.7 s

(d) hmax = 104.5 m at t = 6.5 s

P2-9 (a) x = 40, 70 ft

(b) opening = 42.2 ft

(c) hmax = 50 ft

(d) yes

P2-11 (a) C2
1
− 70 C1 + 600 = 0

(b) C1 = 10 𝜇F, or C1 = 60 𝜇F

P2-13 (a) k2
1
− 50 k1 − 2, 500 = 0

(b) k1 = 115.14 N/m

(c) k2 = 645.4 N/m
no, k cannot be negative

P2-15 (a) t = 2, 6 s

(b) Time when rocket hit ground = 8 s

(c) hmax = 256 ft at t = 4 s

P2-17 (a) yr = 1

(b) yr = 1/2

(c) yr = 0, 9

P2-19 (a) 7 k2
1
− 160 k1 − 450 = 0

(b) k1 = 254 N/m, k2 = 86.2 N/m

P2-21 (a) 𝜔2 − 16𝜔 − 80 = 0

(b) 𝜔 = 20 rad/s or 𝜔 = −4 rad/s
only positive value is meaningful

(c) 𝜔 = 8 rad/s

P2-23 (a) 𝜔2 ± 3, 000𝜔 − 107 = 0

(b) 𝜔 = 2, 000 or 5, 000 rad/s

P2-25 (a) 4 R2 − 1, 750 R − 50, 000 = 0

(b) R = 464 Ω

P2-27 (a) R2 + 20 R − 1, 600 = 0

(b) R = 31.2 Ω

P2-29 s = −14, 472 or s = −5, 527

P2-31 (a) L2 − 14 L + 40 = 0

(b) L = 4, 10 m

P2-33 (a) x2 − 75 x + 625 = 0

(b) xA = 9.55 m and xB = 65.5 m

(c) Length of tunnel = 75 m

P2-35 (a) P2 − 2.11 P + 0.5629 = 0

(b) P = 31.3%

(c) P2 − 2.11 P + 0.9284 = 0
P = 62.4%

P2-37 (a) x2 − 5 x + 2 = 0

(b) x = 0.438

(c) CO(g) = H2O (g) = 0.562,
CO2(g) = H2(g) = 1.44

P2-39 (a) G(p) = −150 p2 + 7 × 104 p
− 6.5 × 106 = 0

(b) p = 338.74, 127.92 USD

(c) Gmax = 1.67 × 106 USD
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Chapter 3

P3-1 h = 80 m and 𝜃 = 53.13∘

P3-3 l = 163.82 in. and 𝜃 = 17.77∘

P3-5 A = 5.85 × 104 m2

P3-7 𝜃 = 88.85∘

P3-9 h = 315 m and 𝜃 = 36.87∘

P3-11 x = −1.237 m and y = 1.237 m

P3-13 x = −1.237 m and y = −1.237 m

P3-15 (a) P(x, y) = (−6.298, 4) in.

(b) P(x, y) = (−4,−6.928) in.

(c) P(x, y) = (6.928, 4) in.

(d) P(x, y) = (5.659,−5.659) in.

P3-17 (a) l = 5.83 in. and 𝜃 = 30.96∘

(b) l = 5.83 in. and 𝜃 = 120.96∘

(c) l = 7.21 in. and 𝜃 = −123.7∘

(d) l = 7.07 in. and 𝜃 = −45∘

P3-19 𝜃1 = 16.32∘ and 𝜃2 = 49.77∘

P3-21 (a) P(x, y) = (4.33, 0.5) in.

(b) 𝜃1 = −53.1∘ and 𝜃2 = 53.1∘

P3-23 (a) P(x, y) = (−5.37, 0.438) m

(b) 𝜃1 = −136∘ and 𝜃2 = 83.4∘

P3-25 (a) P(x, y) = (2.69, 3.31) cm

(b) 𝜃1 = 169.49∘ and 𝜃2 = −107.3∘

P3-27 (a) P(x, y) = (−4.288, 4.473) in.

(b) 𝜃 = −43.67∘ and 𝜃2 = 76.7∘

P3-29 V = 8.77 mph and 𝜃 = 136.82∘

P3-31 Z = 79.06 Ω and 𝜃 = −18.4∘

P3-33 d = 2.25 Angstrom

P3-35 (a) P(x, y) = (18.97,−15.43) in.

(b) 𝜃1 = 60∘ and 𝜃2 = −30∘

P3-37 (a) P(x, y) = (8.66, 13.0) in.

(b) 𝜃1 = 115.51∘ and 𝜃2 = −16.55∘

P3-39 h = 16.28 m

Chapter 4

P4-1 P⃗ = 8.66 î + 5 ĵ = 10∠30∘ in.

P4-3 P⃗ = −0.53 î + 0.53 ĵ = 0.75∠135∘ m

P4-5 P⃗ = 4 î + 6.93 ĵ = 8∠60∘ in.

P4-7 P⃗ = −10.4 î − 6 ĵ = 12∠−150∘ cm

P4-9 P⃗ = 6 î + 8 ĵ = 10∠53.1∘ cm

P4-11 P⃗ = −4.5 î + 6 ĵ = 7.5∠127∘ cm

P4-13 Fx = 39.7 lb and Fy = −30.4 lb
F⃗ = 39.7 î − 30.4 ĵ lb

P4-15 (a) P̂1 = −2.5 î + 4.33 ĵ km
P⃗2 = 4 î + 6.93 ĵ km
P⃗3 = 7 î + 0 ĵ km

(b) P̂ = 85 î + 11.3 ĵ = 14.1∠38.6∘ km

P4-17 (a) d̂1 = 257.12 î + 306.42 ĵ mi
d⃗2 = 250 î − 433 ĵ mi
d⃗3 = −318.2 î − 318.2 ĵ mi

(b) d⃗f = 188.9 î − 444.8
ĵ = 483.25∠−67∘ mi

P4-19 (a) V⃗q = −63.4 î − 135 ĵ mph
V⃗w = 0 î + 35 ĵ mph

(b) V⃗R = −63.4 î − 101 ĵ = 119∠−123∘

P4-21 (a) V⃗ = 1 î − 6.928 ĵ = 7∠−81.79∘ mph

(b) V⃗ = 7∠−81.79∘ mph
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P4-23 (a) T⃗1 = −0.940 T1 î + 0.342 T1 ĵ lb
T⃗2 = 0.996 T2 î + 0.087 T2 ĵ lb
W⃗ = 0 î − 210 ĵ lb

(b) T1 = 495 lb, T2 = 467 lb

P4-25 (a) 𝜃1 = 4.76∘, 𝜃2 = 10.62∘

(b) T̂1 = −0.997 T1 î + 0.083 T1 ĵ lb
T⃗2 = 0.983 T2 î + 0.184 T2 ĵ lb
W⃗ = 0 î − 15 ĵ lb

(c) T1 = 55.58 lb, T2 = 56.35 lb

P4-27 (a) P⃗ = −2.46 î + 19.3 ĵ in.

(b) P⃗ = 19.5∠97.3∘ in.

P4-29 (a) 𝜃1 = 26∘, 𝜃2 = 14∘

(b) T⃗1 = −0.8988 T1 î + 0.4384 T1 ĵ lb
T⃗2 = 0.9703 T2 î + 0.2419 T2 j⃗ lb
W⃗ = 0 î − 200 ĵ lb

(c) T1 = 301.9 lb, T2 = 279.7 lb

P4-31 𝜃 = 54.5∘

(b) T⃗1 = −0.8141 T1 î + 0.5807 T1 ĵ lb
N⃗ = 0.5807 N î + 0.8141 N ĵ lb
W⃗ = 0 î − 3, 500 ĵ lb

(c) T1 = 2, 034.3 lb, N = 2, 848 lb

P4-33 (a) 𝜃 = 16.7∘

(b) N⃗ = −0.2873 N î + 0.9578 N ĵ lb
F⃗ = 0.9578 F î + 0.2873 F ĵ lb
W⃗ = 0 î − 100.14 ĵ lb

(c) N = 96.0 lb, F = 28.8 lb

P4-35 (a) F⃗ = −0.7660 F î + 0.6428 F ĵ lb
N⃗ = −0.6428 N î + 0.7660 N ĵ lb
W⃗ = 0 î − 140 ĵ lb

(b) F = 90 lb, N = 107 lb

P4-37 (a) F⃗1 = −0.5 F1 î + 0.866 F1 ĵ lb
F⃗2 = −0.5 F2 î − 0.866 F2 ĵ lb
F⃗ = 1, 000 î + 0 ĵ lb

(b) F1 = 1,000 lb, F2 = 1,000 lb

P4-39 (a) 𝜃 = 14.9∘

(b) P⃗ = 0.9662 P î + 0.2576 P ĵ lb
N⃗ = −0.2576 N î + 0.9662 N ĵ lb
W⃗ = 0 î − 40 ĵ lb

(c) P = 10.3 lb, N = 38.7 lb

Chapter 5

P5-1 (a) VR = 9 + j 0 V
VL = 0 + j 9 V

(b) V = 9 + j 9 = 12.73 ∠45∘ V

(c) Re(V) = 9 V, Im(V) = 9 V

P5-3 (a) VR = 10.39 − j 6 V
VL = 3 + j 5.2 V

(b) V = 13.39 − j 0.8 = 13.4 ∠−3.4∘ V

(c) Re(V) = 13.39 V, Im(V) = −0.8 V

P5-5 (a) VR = 13.3 + j 6.9 V
VC = 2.3 − j 4.4 V

(b) V = 15.6 + j 2.46 = 15.8 ∠8.96∘ V

(c) Re(V) = 15.6 V, Im(V) = 2.46 V

P5-7 (a) IR = 50 + j 0 = 50 ∠0∘ mA
IL = 0 − j 100 = 100 ∠−90∘ mA

(b) I = 50 − j 100 = 111.8 ∠−63.4∘ mA

(c) Re(I) = 50 mA, Im(I) = −100 mA

P5-9 (a) IR = 150 + j 86.6 = 173.2 ∠30∘ 𝜇A
IL = 50 − j 86.6 = 100 ∠−60∘ 𝜇A

(b) I = 200 + j 0 = 200 ∠0∘ 𝜇A

(c) Re(I) = 200 𝜇A, Im(I) = 0 𝜇A
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P5-11 (a) IR = 1.5 + j 0 = 1.5 ∠0∘ mA
IC = 0 + j 0.6 = 0.6 ∠90∘ mA

(b) I = 1.5 + j 0.6 = 1.62 ∠21.8∘ mA

(c) Re(I) = 1.5 mA, Im(I) = 0.6 mA

P5-13 vo(t) = Re
[
(5 e−j 60∘) ej5𝜋 t

]
V

P5-15 (a) Z = 100 + j 99.7 Ω

(b) Z = 141.2 ∠44.9∘ Ω

(c) Z∗ = 141.2 ∠−44.9∘ Ω
Z Z∗ = 19, 937.4 Ω2

P5-17 (a) I = 11.19 ∠86.57∘ = 0.67
+ j 11.17 A

(b) V = 44.7 ∠−71.57∘ = 14.13
− j 42.4 V

P5-19 (a) Z1 = 25 + j 0 = 25∠0∘ Ω
Z2 = 0 + j 78.5 = 78.5∠90∘ Ω
Z3 = 0 − j 63.7 = 63.7 ∠−90∘ Ω

(b) H = 0.262 + j 0.439 = 0.511
∠59.2∘ Ω

(c) H∗ = 0.511∠−59.2∘ Ω,
H H∗ = 0.261

P5-21 (a) ZR = 100 + j 0 = 100 ∠0∘ Ω
ZL = 10 + j 2 = 10.2 ∠11.3∘ Ω
ZC = 0 − j 500 = 500 ∠−90∘ Ω

(b) I = 0.196 ∠77.54∘ = 0.042
+ j 0.191 A

(c) P = 3.84 ∠0∘ = 3.84 + j 0 W

P5-23 (a) ZL = 0 + j 50 = 50 ∠90∘ Ω
ZC = 0 − j 100 = 100 ∠−90∘ Ω

(b) Ztotal = 75 − j 25 = 79.1 ∠−18.4∘ Ω

P5-25 (a) Z1 = 25 + j 0 = 25 ∠0∘ Ω
Z2 = 35 + j 100 = 105.95 ∠70.7∘ Ω
Z3 = 45 − j 10 = 46.1 ∠−12.53∘ Ω

(b) Z = 65 + j 6.9 = 65.37 ∠6.06∘ Ω

P5-27 (a) Z = 150 + j 50 = 158.1 ∠18.4∘ Ω

(b) I = 0.66 + j 0.22 = 0.696 ∠161.6∘ Ω

(c) Z∗ = 158.1 ∠−18.4∘ Ω
Z Z∗ = 25, 000 Ω2

P5-29 (a) ZR = 2, 000 + j 0 = 2, 000 ∠0∘ Ω
ZC = 0 − j 1, 000 = 1, 000 ∠−90∘ Ω

(b) I1 = 1 − j 2 = 2.24 ∠−63.4∘ mA
I2 = 4 + j 2 = 4.47 ∠26.6∘ mA

(c) I1 + I2 = 5 + j 0 = 5 ∠0∘ mA

P5-31 (a) ZR = 2, 000 + j 0 = 2, 000 ∠0∘ Ω
ZL = 0 + j 1, 000 = 1, 000 ∠90∘ kΩ

(b) I1 = 1 + j 2 = 2.24 ∠63.4∘ mA
I2 = 4 − j 2 = 4.47 ∠−26.6∘ mA

(c) I1 + I2 = 5 + j 0 = 5 ∠0∘ mA

P5-33 (a) Z1 = 1 + j 1 = 1.414 ∠45∘ Ω
Zo = 5, 000 − j 5, 000 =
7, 070 ∠−45∘ Ω

(b) Z2 = 1 + j 0.5 = 1.118 ∠26.56∘ Ω
Zin = 5 − j 10 = 11.18 ∠−63.44∘ kΩ

(c) Vout = −8.48 − j 2.83 =
8.94 ∠−161.6∘ V

P5-35 (a) ZR = 50 + j 0 = 50∠0∘ Ω
ZL = 0 + j 6𝜋 = 6𝜋∠90∘ Ω
ZC = 0 − j 132.6 = 132.6 ∠−90∘ Ω

(b) Z = 50 + j 0 = 50 ∠0∘ Ω

P5-37 (a) Z1 = 200 + j 0 = 200 ∠0∘ Ω
Z2 = 0 + j 2.4 = 2.4 ∠90∘ Ω
Z3 = 0 − j 83.33 = 83.33 ∠−90∘ Ω

(b) Vab = −5.5 + j 5.5 = 7.78 ∠135∘ V

(c) P = 0 + j 6.05 = 6.05 ∠90∘ W

P5-39 (a) ZR = 50 + j 0 = 50 ∠0∘ Ω
ZL = 0 + j 30 = 30 ∠90∘ Ω
ZC = 0 − j 40 = 40 ∠−90∘ Ω

(b) Z = 42.6 + j 17.75 = 46.15
∠22.62∘Ω

Chapter 6

P6-1 Amplitude = l = 8 in.
Frequency f = 1/4 Hz,
𝜔 = 0.5𝜋 rad/s
Period = 4 s
Phase angle 𝜙 = 0 rad
Time shift = 0 s
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P6-3 Amplitude = l = 7.5 cm
Frequency f = 2 Hz, 𝜔 = 4𝜋 rad/s
Period = 1/2 s
Phase angle 𝜙 = −𝜋∕4 rad
Time shift = 1∕16 s (to right)

P6-5 Amplitude = l = 12 cm
Frequency f = 1 Hz, 𝜔 = 2𝜋 rad/s
Period = 1 s
Phase angle 𝜙 = 3𝜋∕4 rad
Time shift = 3/8 s (to left)

P6-7 Amplitude = A = 3 cm
Frequency f = 1/2 Hz, 𝜔 = 𝜋 rad/s
Period = 2.0 s
Phase angle 𝜙 = 0 rad
y(t) = 3 sin(𝜋 t) cm

P6-9 Amplitude = A = 8 in
Frequency f = 1/4 Hz, 𝜔 = 𝜋∕2 rad/s
Period = 4 s
Phase angle 𝜙 = 0.2𝜋 rad
x(t) = 8 sin(0.5𝜋 t + 0.2𝜋) in.

P6-11 (a) Amplitude = A = 10 cm
Frequency f = 1∕𝜋 Hz, 𝜔 = 2 rad/s
Period = 𝜋 s

(b) t = 𝜋/2 s

P6-13 (a) Amplitude = A = 4 cm
Frequency f = 1/2 Hz, 𝜔 = 𝜋 rad/s
Period = 2 s
Phase angle 𝜙 = 𝜋/8 rad
Time shift = 1/8 s (to left)

(b) t = 3/8 s

P6-15 (a) Amplitude A = 5 cm
Frequency f = 5 Hz, 𝜔 = 10𝜋 rad/s
Period = 1/5 s

(b) t = 1∕10 s

P6-17 (a) Amplitude = A = 𝜋∕6 rad
f = 1.58 Hz, 𝜔 = 9.90 rad/s
Period = 0.635 s
Phase angle = 𝜙 = 𝜋∕2 rad
Time shift = 0.159 s (to left)

(b) t = 0.159 s

(c) 𝜙(t) = 0.552 cos(9.9 t − 162∘) rad

P6-19 (a) Amplitude = A = 10 V
f = 500∕𝜋 Hz, 𝜔 = 1000 rad/s
Period = 𝜋∕500 s
Phase angle = 𝜙 = 𝜋∕2 rad
Time shift = 𝜋∕2000 s (to left)

(b) t = 3𝜋∕2, 000 s

(c) v(t) = 10
√

2 cos(1000 t + 135∘) V

P6-21 (a) Amplitude = A = 8 V
f = 2 Hz, 𝜔 = 4𝜋 rad/s
Period = 0.5 s
Phase angle = 𝜙 = −𝜋∕2 rad
Time shift = 1∕8 s (to right)

(b) tmax = 1∕8 s

(c) v(t) = 9.43 cos(4𝜋 t − 58∘) A

P6-23 (a) i(t) = 5
√

2 sin(60𝜋 t + 45∘) A

(b) Amplitude = A = 7.1 A
f = 30 Hz, 𝜔 = 60𝜋 rad/s
Period = 1/30 s
Phase angle = 𝜙 = 𝜋∕4 rad
Time shift = 1∕240 s (to left)

(c) tmax = 1∕240 s

P6-25 (a) i(t) = 9 sin(𝜋 t + 38.9∘) A

(b) Amplitude = A = 9 A
f = 1/2 Hz, 𝜔 = 𝜋 rad/s
Period = 2 s
Phase angle = 𝜙 = 0.216𝜋 rad
Time shift = 0.216 s (to left)

(c) tmax = 0.41 s

P6-27 (a) Amplitude = A = 5 V
f = 1∕2 Hz, 𝜔 = 𝜋 rad/s
Period = 2 s
Phase angle = 𝜙 = 𝜋∕6 rad
Time shift = 1∕6 s (to left)

(b) t = 5∕6 s

(c) v(t) = 5.1 sin(𝜋 t + 58.1∘) V

P6-29 (a) Amplitude = A = 3 in.
f = 50 Hz, 𝜔 = 100𝜋 rad/s
Period = 1∕50 s
Phase angle = 𝜙 = 5𝜋∕36 rad
Time shift = 1∕720 s (to left)
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(b) t = 1∕720 s

(c) C(t) = 5.86 cos(100𝜋 t + 77.5∘) in.

P6-31 (a) Amplitude = A = 5 in.
f = 2 Hz, 𝜔 = 4𝜋 rad/s
Period = 1∕2 s
Phase angle = 𝜙 = −𝜋∕6 rad
Time shift = 1∕24 s (to right)

(b) t = 1∕24 s

(c) 𝛿(t) = 13.2 cos(4𝜋 t + 19.1∘) in.

P6-33 (a) Amplitude = A = 4 in.
f = 10 Hz, 𝜔 = 62.83 rad/s
Period = 1∕10 s
Phase angle = 𝜙 = −𝜋∕3 rad
Time shift = 16.7 ms (to right)

(b) t = 16.7 ms

(c) e(t) = 2.48 sin(62.83 t + 53.8∘) in.

P6-35 (a) Amplitude = A = 150 V
f = 15 Hz, 𝜔 = 30𝜋 rad/s
Period = 1∕15 s
Phase angle = 𝜙 = −𝜋∕4 rad
Time shift = 1∕120 s (to right)

(b) t = 1∕120 s (to right)

(c) Vm(t) =
150√

2
(sin(30𝜋 t)+

cos(30𝜋 t)) V

(d) VT(t) = 188.7 sin(30𝜋 t + 34.2∘) V

P6-37 (a) Amplitude = A = 75 dBA
f = 2, 000 Hz, 𝜔 = 4, 000𝜋 rad/s
Period = 1∕2, 000 s
Phase angle = 𝜙 = −𝜋∕3 rad
Time shift = 1∕12, 000 s (to right)

(b) t = 1∕4, 800 s

(c) F(t) = 38.8 cos(4, 000𝜋 t − 75∘) dBA

P6-39 (a) Amplitude = A = 2.5 V
f = 1∕4 Hz, 𝜔 = 𝜋∕2 rad/s
Period = 4 s
Phase angle = 𝜙 = 𝜋∕3 rad
Time shift = 2∕3 s (to left)

(b) t = 3.33 s

(c) v(t) = 3.91 cos(0.5𝜋 t + 33.67∘) V

Chapter 7

P7-1 (a) I1 = 1 mA, I2 = −3 mA

(b)
[
−5, 000 1, 000

1, 000 −3, 000

] [
I1
I2

]
=
[
−8
10

]
(c) I1 = 1 mA, I2 = −3 mA

(d) I1 = 1 mA, I2 = −3 mA

P7-3 (a) I1 = 1 A, I2 = 1 A

(b)
[

15 5
5 25

] [
I1
I2

]
=
[

20
30

]
(c) I1 = 1 A, I2 = 1 A

(d) I1 = 1 A, I2 = 1 A

P7-5 (a)
[

5 −2
−1 2

] [
V1
V2

]
=
[

20
5

]
(b) V1 = 6.25 V, V2 = 5.625 V

(c) V1 = 6.25 V, V2 = 5.625 V

(d) V1 = 6.25 V, V2 = 5.625 V

P7-7 (a)
[

150 75
75 150

] [
I1
I2

]
=
[

100
−100

]
(b) I1 = 1.333 A, I2 = −1.333 A

(c) I1 = 1.333 A, I2 = −1.333 A

(d) No, I2 should be in the opposite
direction.

P7-9 (a) G1 = 0.035 ℧, G2 = 0.005 ℧

(b)
[

20 20
10 30

] [
G1
G2

]
=
[

0.8
0.5

]
(c) G1 = 0.035 ℧, G2 = 0.005 ℧

(d) G1 = 0.035 ℧, G2 = 0.005 ℧

P7-11 (a)
[

0.866 −0.707
0.5 0.707

] [
T1
T2

]
=
[

0
60

]
(b) T1 = 43.9 lb, T2 = 53.8 lb

(c) T1 = 43.9 lb, T2 = 53.8 lb

(d) T1 = 43.9 lb, T2 = 53.8 lb
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P7-13 (a) FV = 183 N, FH = 833 N

(b)
[

1 −0.22
−0.1 0.01

] [
FV
FH

]
=
[

0
−10

]
(c) FV = 183 N, FH = 833 N

(d) FV = 183 N, FH = 833 N

P7-15 (a)
[

3 −3
8 8

] [
vo
vj

]
=
[

2, 340
9, 120

]
(b) vo = 960 mph, vj = 180 mph

(c) vo = 960 mph, vj = 180 mph

(d) vo = 960 mph, vj = 180 mph

P7-17 (a) m1 = 455 mi, m2 = 355 mi

(b)
[

4 4
1 −1

] [
m1
m2

]
=
[

3, 240
100

]
(c) m1 = 455 lb, m2 = 355 mph

(d) m1 = 455 lb, m2 = 355 mph

P7-19 (a)
[

2 2
1 −1

] [
v1
v2

]
=
[

2, 500
150

]
(b) v1 = 700 mph, v2 = 550 mph

(c) v1 = 700 mph, v2 = 550 mph

(d) v1 = 700 mph, v2 = 550 mph

P7-21 (a)
[

1.0 1.0
0.75 0.25

] [
VA
VB

]
=
[

150
90

]
(b) VA = 105 gallons, VB = 45 gallons

(c) VA = 105 gallons, VB = 45 gallons

(d) VA = 105 gallons, VB = 45 gallons

P7-23 (a)
[

1 1
50 30

] [
t1
t2

]
=
[

480
20, 000

]
(b) t1 = 280 min, t2 = 200 min

(c) t1 = 280 min, t2 = 200 min

(d) t1 = 280 min, t2 = 200 min

P7-25 (a) R1 + R2 = 9, 810
2 R1 − 1.5 R2 = 15, 000

(b) R1 = 8, 490 N, R2 = 1, 320 N

(c)
[

1 1
2 −1.5

] [
R1
R2

]
=
[

9, 810
15, 000

]
(d) R1 = 8, 490 N, R2 = 1, 320 N

(e) R1 = 8, 490 N, R2 = 1, 320 N

P7-27 (a) R1 + R2 = 11, 772
2 R1 − 2 R2 = 16, 200

(b) R1 = 9, 936 N, R2 = 1, 836 N

(c)
[

1 1
2 −2

] [
R1
R2

]
=
[

11, 772
16, 200

]
(d) R1 = 9, 936 N, R2 = 1, 836 N

(e) R1 = 9, 936 N, R2 = 1, 836 N

P7-29 (a) 0.707 Fm − 0.866 Wf =
70√

2
0.707 Fm − 0.5 Wf = 65

(b) Wf = 42.38 N, Fm = 121.9 N

(c)
[

0.707 −0.866
0.707 −0.5

] [
Fm
Wf

]
=

[
70√

2
65

]

(d) Wf = 42.38 N, Fm = 121.9 N

(e) Wf = 42.38 N, Fm = 121.9 N

P7-31 (a) c1 = 36.18 × 10−4 mol,
c2 = 1.93 × 10−4 mol

(b)
[

320 3327
316 762

] [
c1
c2

]
=
[

1.8
3.1

]
(c) c1 = 36.18 × 10−4 mol,

c2 = 1.93 × 10−4 mol

(d) c1 = 36.18 × 10−4 mol,
c2 = 1.93 × 10−4 mol

P7-33 (a)

[
0.017 0.257

0.257 6

][
m
b

]
=
[

2
31

]
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(b) m = 112 V, b = 0.361 A

(c) m = 112 V, b = 0.361 A

(d) m = 112 V, b = 0.361 A

P7-35 (a)
[

1 1
0.05 0.12

] [
VA
VB

]
=
[

5
0.5

]
(b) VA = 1.43 L, VB = 3.57 L

(c) VA = 1.43 L, VB = 3.57 L

(d) VA = 1.43 L, VB = 3.57 L

P7-37 (a) xA = 1.68 L, xB = 5.086 L

(b)
[

0.14 3.1
1.1 1.8

] [
xA
xB

]
=
[

16
11

]
(c) xA = 1.68 L, xB = 5.086 L

(d) xA = 1.68 L, xB = 5.086 L

P7-39 (a) u = −1.291 mm, v = 0.615 mm

(b)
[

0.45 0.5831
0.5831 1.224

] [
u
v

]
=
[
−0.2224

0

]
(c) u = −1.291 mm, v = 0.615 mm

(d) u = −1.291 mm, v = 0.615 mm

Chapter 8

P8-1 (a) y(t) = 80 + 120 t − 16.1 t2 ft

(b) v(t) = −32.2 t + 120 ft/s

(c) a(t) = −32.2 ft/s2

(d) tmax = 3.73 s, ymax = 303.6 ft

P8-3 (a) y(t) = 50 t − 4.905 t2 m

(b) v(t) = 50 − 9.81 t m/s

(c) a(t) = −9.81 m/s2

(d) tmax = 5.1 s, ymax = 127.4 m

P8-5 (a) x(3) = 5.83 m
v(3) = 6.66 m/s
a(3) = −21.75 m/s2

(b) x(3) = 1, 004.7 m
v(3) = 1, 640.4 m/s
a(3) = 2, 165.1 m/s2

(c) x(3) = 32.355 km
v(3) = 97.177 km/s
a(3) = 291.65 km/s2

P8-7 (a) v(t) = 6 t2 − 60 t + 144 m/s
a(t) = 12 t − 60 m/s2

(b) x(4) = 254, x(6) = 246 m
a(4) = −12 m/s2, a(6) = 12 m/s2

(c) x(0) = 30 m, x(4) = 254 m (local max),
x(6) = 246 m (local min)

P8-9 (a) v(t) = 60 sin(5 t) in./s

(b) a(t) = 300 cos(5 t) in./s2

(c) y(𝜋∕5) = 24 in, y(2𝜋∕5) = 0 in.
a(𝜋∕5) = −300 in/s2, a(2𝜋∕5) = 300
in./s2

(d) ymax = 24 in. at t = 𝜋

5
s

P8-11 (a) v(t) = −11.25 e−150 t V
p(t) = −168.75 e−300 t W
pmax = 168.75 W at t = 0 s

(b) v(t) = 47.1 cos(120𝜋 t) V
p(t) = 589.05 sin(240𝜋 t) W
pmax = 589.05 W at t = 1∕480 s

P8-13 (a) i(t) = 100 e−10 t cos(10 t) mA

(b) v(𝜋∕20) = 2.08 V, v(3𝜋∕20) = −0.09 V

(c) v(𝜋∕40) = 0 V, v(3𝜋∕40) = 1.34 V
v(5𝜋∕40) = 0 V, v(7𝜋∕40) = −0.019 V
v(9𝜋∕40) = 0 V

P8-15 (a) t = 3∕4, 7∕4, 11∕4 s

(b) Local minima at t=3/4 and 11/4 s
Local maximum at t=7/4 s

(c) 𝜀(3∕4) = −34 × 10−4,
𝜀(7∕4) = 1.45 × 10−4

𝜀(11∕4) = −6.26 × 10−6
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P8-17 (a) 0 ≤ t ≤ 9 s: a(t) = 2 m/s2

9 < t ≤ 12 s: a(t) = −6 m/s2

t > 12 s: a(t) = 0 m/s2

(b) 0 ≤ t ≤ 9 s: v(t) = 2 t m/s

x(t) is a quadratic function with
increasing slope/concave up
x(t) = t2 m, x(9) = 81 m

9 < t ≤ 12 s:

v(t) = −6(t − 12) m/s
x(t) is quadratic function with
decreasing slope/concave down
x(9) = 81 m, x(12) = 108 m

t > 12 s: v(t) = 0 m/s

x(t) is a straight line
with a slope of 0
and x(12) = 108 m,
x(t > 12) = 0(t − 12) + 108

= 108 m

P8-19 (a) 0 ≤ t ≤ 4 s:

a(t) = −6 m/s2, v(t) linear with
slope = −6 m/s2

4 < t ≤ 8 s:

a(t) = 3 m/s2, v(t) linear with
slope = 3 m/s2

8 < t ≤ 10 s:

a(t) = 0 m/s2, v(t) constant

(b) 0 ≤ t ≤ 4 s: v(t) = −6 t m/s

x(t) is a quadratic function with
decreasing slope/concave down
x(t) = −3 t2, x(4) = −48 m

4 < t ≤ 8 s: v(t) = 3 t − 36 m/s

x(t) is a quadratic function with
increasing slope/concave up
x(t) = 1.5 t2 − 36 t + 72
x(8) = −120 m

8 < t ≤ 10 s: v(t) = −12 m/s

x(t) = −12(t − 8) − 120 m
x(10) = −144 m

P8-21 (a) Current:
di(t)
dt

= 5 v(t)

0 ≤ t ≤ 2 ms: v(t) = −100 V

i(t) is a straight line with a
slope = 5(−100) = −500 A/s
since i(0) = 1 A,
i(t) = −500 t + 1 A
i(2ms) = 0 A

2 < t ≤ 4 ms: v(t) = 100 V

i(t) is a straight line with a
slope = 5 × (100) = 500 A/s
since i(2ms) = 0 A,
i(t) = 500 (t − 2ms) + 0 A
i(4ms) = 1 A

4 < t ≤ 8 ms: v(t) = −200 V

i(t) is a straight line with a
slope = 5 × (−200) = −1000 A/s
since i(4ms) = 1 A,
i(t) = −1000 (t − 4ms) + 1A
i(8ms) = −3 A, i(5ms) = 0 A

(b) Power: p(t) = v(t) i(t)

0 ≤ t ≤ 2 ms:

p(t) = 5 × 104 t − 100 W
p(0) = −100 W
p(2ms) = 0 W

2 < t ≤ 4 ms:

p(t) = 5 × 104(t − 2ms) W
p(4ms−) = 100 W

4 < t ≤ 8 ms:

p(t) = 2 × 105(t − 4 ms) − 200 W
p(4ms+) = −200 W
p(8ms) = 600 W

P8-23 (a) Current:
di(t)
dt

= 25
3

v(t)

0 ≤ t ≤ 2 ms: v(t) = 1 V

i(t) is a straight line with a
slope = (25/3) × 1 = 25/3 A/s
since i(0) = 0 A,
i(t) = (25∕3) t + 0 A,
i(2ms) = 50∕3 mA
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2 < t ≤ 4 ms: v(t) = −1 V

i(t) is straight line with a
slope = (25/3)(−1) = − 25/3 A/s

i(t) = −25
3
(t − 4ms) A

i(4ms) = 0 mA

4 < t ≤ 8 ms: v(t) = 2 V

i(t) is straight line with a
slope = (25/3)(2) = 50/3 A/s

since i(4ms) = 0, i(t) = 50
3
(t − 4ms) A

i(8ms) = 200/3 mA

(b) Power: p(t) = v(t) i(t)

0 ≤ t ≤ 2 ms:

p(t) = 25
3

t W, p(2ms−) = 50
3

mW

2 < t ≤ 4 ms:

p(t) = 25
3
(t − 4ms) W

p(2ms+) = − 50/3 mW,
p(4ms) = 0 mW

4 < t ≤ 8 ms:

since p(4 ms) = 0,

p(t) = 100
3

(t − 4ms) W

p(8ms) = 400/3 mW

P8-25 Voltage:
dv(t)

dt
= 104 i(t)

0 ≤ t ≤ 2 ms: i(t) = 1 A

v(t) is a straight line with a
slope = 104 × 1 = 104 V/s
since v(0) = 0 V, v(t) = 104 t V,
v(2ms) = 20 V

2 < t ≤ 4 ms: i(t) = 1 A

v(t) is straight line with a
slope = 104 × (−2) = −2 × 104 V/s
since v(2ms) = 20 V,
v(t) = −2 × 104(t − 2ms) + 20 V
v(4ms) = −20 V

4 < t ≤ 6 ms: i(t) = −1 A

v(t) is straight line with a
slope = 104 × (−1) = −104 V/s
since v(4ms) = −20 V,
v(t) = −104(t − 4ms) − 20 V
v(6ms) = −40 V

6 < t ≤ 8 ms: i(t) = 2 A

v(t) is straight line with a
slope = 104 × (2) = 2 × 104 V/s
since v(6ms) = 40 V,
v(t) = 2 × 104(t − 6ms) − 40 V
v(6ms) = 0 V

Power: p(t) = v(t) i(t)

0 ≤ t ≤ 2 ms:

p(t) = 104 t W, p(2ms−) = 20 W

2 < t ≤ 4 ms:

p(t) = −40 + 4 × 104(t − 2ms) W
p(2ms+) = −40W,
p(3ms) = 0 W, p(4ms) = 40 W

4 < t ≤ 6 ms:

p(t) = 20 + 104(t − 4ms) W
p(4ms+) = 20 W, p(6ms−) = 40 W

6 < t ≤ 8 ms:

p(t) = −80 + 4 × 104(t − 6ms) W
p(6ms) = −80 W, p(8ms+) = 0 W

P8-27 (a) 𝜃(x) = P
2000EI

(300 x2 − 91 L2)

(b) M(x) = 3P
10

x

V(x) = 3P
10

(c) ymax = −0.0167PL3

EI
at

x = 0.5508 L

(d) y(0) = 0, 𝜃(0) = −0.0455PL2

EI
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P8-29 (a) 𝜃(x) =
Mo

24 EI L
(12 x2 − L2),

0 ≤ x ≤
L
2

Mo

24 EI L
(12 x2 − 24 L x + 11 L2),

L
2

≤ x ≤ L

(b) 0 ≤ x ≤
L
2

: x = 0.289 L

L
2

≤ x ≤ L: x = 0.711 L

(c) y(0) = 0, 𝜃(0) = −
Mo L
24 EI

y
(L

2

)
= 0, 𝜃

(L
2

)
=

Mo L

12 EI

y(L) = 0, 𝜃(L) = −
Mo L
24 EI

(d) y(0.289 L) = −0.0080
Mo L2

EI

y(0.711 L) = 0.0080
Mo L2

EI

P8-31 (a) 𝜃(x) = −
wo

360 EI L
×

(7 L4 − 30 L2 x2 + 15 x4)

(b) y(0) = 0, 𝜃(0) = −
7 wo L3

360 EI

y(L) = 0, 𝜃(L) =
wo L3

45 EI

(c) ymax = −
0.00652 wo L4

EI
at x = 0.5193 L

P8-33 (a) 𝜃(x) = M
6 EI L

(3 x2 + 6 L x − 4 L2)

(b) ymax = 0.188 M L2

EI
at x = 0.528 L

(c) y(0) = 0, y(L) = 0

𝜃(0) = −2 M L
3 EI

,

𝜃(L) = 5 M L
6 EI

P8-35 (a) 𝜃(x) = F
12 EI

(L2 − 3 x2)

(b) y1,max = 0.032 F L3

EI
at x = 0.577 L

(c) y1(0) = 0, y1(L) = 0

𝜃1(0) =
F L2

12 EI
, 𝜃1(L) = −F L2

6 EI

(d) y2(1.5 L) = −0.125 F L3

EI
P8-37 (a) t = 0, 1/120, 1/60 s

(b) maximum at t = 1/120 s

minima at t = 0 and t = 1/60 s

(c) 𝜎c(0 s) = 6.7 ksi,

𝜎c(1/120 s) = 12.6 ksi

𝜎c(1/60 s) = 6.7 ksi

(d) 𝜎c,max = 12.6 ksi at t = 1∕120 s

P8-39 (a) slope = 2 a x + 0.15, b = 0.15

(b) ŷ = −0.1 x + 22 m

(c) (176, 4.4) m

(d) y(x) = −0.00071 x2 + 0.15 x m

Chapter 9

P9-1 (a) A ≈ 1.30 kl
(b) A = 4∕3 kl

P9-3 (a) Distance covered = A ≈ 560 ft

(b) Distance covered = A ≈ 600 ft

(c) Distance covered = A = 640 ft

(d) Distance covered = A = 640 ft

P9-5 (a) W = 629.6 N-m

(b) W = 1, 490 N-m

(c) W = 5.09 N-m

P9-7 (a) y(x) = − (4∕3) x + 24 cm

(b) A = 216 cm2

(c) x = 6 cm, y = 8 cm

(d) y = 8 cm
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P9-9 (a) y(x) = −2 x + 16 ft

(b) A = 48 ft2

(c) x = 1.78 ft

(d) y = 6.22 ft

P9-11 (a) h = 5 in., b = 5 in.

(b) A = 41.7 in.2

(c) x = 3 in.

(d) y = 4.70 in.

P9-13 (a) x1 = 1.5 m, y1 = 0.6 m

(b) A1 = 2.7 m2

(c) x = 1.83 m

(d) y = 0.527 m

(e) xdrone = 3.67 m, ydrone = 0.463 m

P9-15 (a) h = 7.06 in., b = 1.52 in.

(b) A = 6.56 in.2

(c) x = 0.884 in.

(d) y = 2.72 in.

P9-17 (a) w(0) = 10 wo, w(L) = 28.7 wo

(b) R = 30 wo L

(c) x = 0.504 L

P9-19 (a) v(t) = 5(t4 + t3 + t2 + t) m/s

y(t) = 5( t5

5
+ t4

4
+ t3

3
+ t2

2
) m

(b) v(t) = 1
8𝜋

(1 − cos(8𝜋 t)) m/s

y(t) = 1
64𝜋2

(8𝜋 t − sin(8𝜋 t)) m

P9-21 Position:
dx(t)

dt
= v(t)

x(t) = x(t0) + ∫
t

t0
v(t)dt

0 ≤ t ≤ 6 s:
dx(t)

dt
= −4 t + 12 m/s

v(t) is a decreasing linear function
Therefore, x(t) is a quadratic
function with a decreasing slope/
concave down since x(0) = 18,
x(3s) = 18 + (1∕2)(3)(12) = 36 m
x(6s) = 36 − (1∕2)(3)(12) = 18 m

6 < t ≤ 9 s:
dx(t)

dt
= −12 m/s

v(t) is constant
Therefore, x(t) is a linear function
with a slope = −12 m/s

since x(6) = 18,
x(t) = −12(t − 6) + 18,
x(9s) = −18 m/s

9 < t ≤ 12 s:
dx(t)

dt
= 4 t − 12 m/s2

v(t) is a increasing linear function
Therefore, x(t) is a quadratic
function with an increasing slope/
concave up since x(9s) = −18,
x(12s) = −18 + (1∕2)(3)(−12)

= −36 m with zero slope

P9-23 (a) Velocity:
dv(t)

dt
= a(t)

v(t) = v(t0) + ∫
t

t0
a(t)dt

0 ≤ t ≤ 5 s: a(t) = 60 ft/s2

v(t) is a linear function with a
slope = 60 ft/s2

since v(0) = −150, v(t) = −150
+ 60 t ft/s
v(5s) = 150 ft/s

5 < t ≤ 10 s: a(t) = −30 ft/s2

v(t) is a linear function with a
slope = −30 ft/s2

since v(5s) = 150,
v(t) = 150 − 30(t − 5) ft/s
v(10s) = 0 ft/s

10 < t ≤ 15 s: a(t) = 0

v(t) is a linear function with
a slope = 0 ft/s2

since v(10) = 0, v(t) = 0 ft/s,
v(15s) = 0 ft/s

15 < t ≤ 20 s: a(t) = −60 ft/s2

v(t) is a linear function with a
slope = −60 ft/s2

since v(15s) = 0,
v(t) = 0 − 60(t − 15) ft/s
v(20s) = −300 ft/s

20 < t ≤ 25 s: a(t) = 30 ft/s2

v(t) is a linear function with
a slope = 30 ft/s2

since v(20s) = −300,
v(t) = −300 + 30(t − 20) ft/s
v(25s) = −150 ft/s
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(b) Position:
dx(t)

dt
= v(t)

x(t) = x(t0) + ∫
t

t0
v(t)dt

0 ≤ t ≤ 2.5 s:
v(t) = 60 t − 150 ft/s

x(t) is a quadratic function with
an increasing slope/concave up
since x(0) = 0,
x(2.5s) = 0 + (1∕2)(2.5)(−150)

= −187.5 ft

2.5 < t ≤ 5 s:
v(t) = 60t − 150 ft

x(t) is a quadratic function with
increasing slope/concave up
since x(2.5s) = −187.5,
x(5s) = −187.5 + (1∕2)(2.5)(150)

= 0 ft

5 < t ≤ 10 s:

v(t) = −30 t + 300 ft/s

x(t) is a quadratic function with
decreasing slope/concave down
since x(5s) = 0,
x(10s) = 0 + (1∕2)(5)(150)

= 375 ft

10 < t ≤ 15 s: v(t) = 0

x(t) is a linear function with a
slope = 0 ft/s
since x(10) = 375,
x(t) = 375 ft/s, v(15s) = 375 ft

15 < t ≤ 20 s:
v(t) = −60 t + 900 ft/s

x(t) is a quadratic function with
decreasing slope/concave down
since x(15s) = 375,
x(20s) = 375 + (1∕2)(5)(−300)

= −375 ft

20 < t ≤ 25 s:
v(t) = 30 t − 300 ft/s

x(t) is a quadratic function with
increasing slope/concave up
since x(20s) = −375,
x(25s) = −375 + (1∕2)(5)(−150)

+5(−150) = −1500 ft

P9-25 (a) Charge:
dq(t)

dt
= i(t)

q(t) = q(t0) + ∫
t

t0
i(t)dt

0 ≤ t ≤ 4 s: i(t) = −200 mA

q(t) is a linear function with a
slope = −200 mC/s
since q(0) = 200 mC,
q(t) = 200 − 200 t mC,
v(4s) = −600 mC

4 < t ≤ 6 s: i(t) = 100 mA

q(t) is a linear function with a
slope = 100 mC/s
since q(4s) = −600 mC,
q(t) = −600 + 100(t − 4) mC,
q(6s) = −400 mC

6 < t ≤ 8 s: i(t) = 200 mA

q(t) is a linear function with a
slope = 200 mC/s
since q(6s) = −400 mC,
q(t) = −400 + 200 (t − 6) mC,
q(8s) = 0 mC

P9-27 (a) vo(t) = 1 − cos(100 t) V

(b) w(t) = 7.5 − 10cos(100 t)+
2.5 cos(200 t) 𝜇J

P9-29 (a) vo(t) = 3(1 − e−10 t) V

(b) vo(0s) = 0, vo(0.1s) = 1.896 V,
vo(0.5s) ≈ 3 V

(c) w(t) = 0.45(1 − e−10 t)2 mJ

P9-31 (a) v(t) = 60 − 10 e−5 t V

(b) v(0) = 50, v(0.25s) = 57.1 V,
v(0.5s) = 59.2, v(1s) = 59.9 V

(c) p(t) = 3 e−5 t − 0.5e−10 t W

(d) w(t) = −0.6 e−5 t + 0.5 e−10 t

+0.55 J
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P9-33 Voltage:
dv(t)

dt
= 4000 i(t)

v(t) = v(t0) + 4000 ∫
t

t0
i(t)dt

0 ≤ t ≤ 2 ms: i(t) = 5(t − 1) mA

v(t) is a quadratic function with
increasing slope/concave up

since v(0) = 0 V,
v(1ms) = 0 + 400×
(1∕2)(.001)(−.005) = −10 mV
By symmetry, parabola is
symmetric about vertex.
Also, function is periodic and
repeats in subsequent intervals.

P9-35 (a) Voltage:

0 ≤ t ≤ 100 ms:
v(t) = 125 t V

100 ≤ t ≤ 200 ms:
v(t) = −62.5 t + 18.75 V

200 ≤ t ≤ 300 ms:
v(t) = 62.5 t − 6.25 V

300 ≤ t ≤ 400 ms:
v(t) = −125 t + 50 V

t > 40 ms: v(t) = 0 V

(b) Power:

0 ≤ t ≤ 100 ms:
p(t) = 1500 t mW

100 ≤ t ≤ 200 ms:
p(t) = 375 t − 112.5 mW

200 ≤ t ≤ 300 ms:
p(t) = 375 t − 37.5 mW

300 ≤ t ≤ 400 ms:
p(t) = 1500 t − 600 mW

t > 40 ms: v(t) = 0 mW

P9-37 (a) v(t) = 4
3𝜋

[
1 − cos

(
𝜋

2
t
)]

m/s

(b) p(t) = 1100 sin(𝜋 t) W
pmax = 1100 W

(c) w(t) = 1100
𝜋

[
1 − cos(𝜋 t)

]
J

wmax = 2200
𝜋

J

P9-39 (a) M(x) =
wo L2

𝜋2
sin

(
𝜋 x
L

)
(b) 𝜃(x) = −

wo L3

𝜋3 EI
cos

(
𝜋 x
L

)
Chapter 10

P10-1 (a) htran(t) = C e−
k
A

t

(b) hss(t) = − Q

2
(
A2𝜔2 + k2

)×
(A𝜔 sin𝜔 t + k cos𝜔 t) +

Q
2 k

(c) h(t) = − Q

2
(
A2𝜔2 + k2

)×(
A𝜔 sin𝜔 t + k cos𝜔 t + k e−

k
A

t
)

+ Q
2 k

(1 − e−
k
A

t)

P10-3 (a) vtran(t) = C e−
1

RC
t V

(b) vss(t) = 0 V

(c) v(t) = 18 e−
1

RC
t V

(d) t = 4.61 RC

(e) T, F, F, F

P10-5 (a) atran(t) = C e−0.01 t gal

(b) ass(t) = 30 gal

(c) a(t) = 30 − 10 e−0.01 t gal

(d) 4.9%
P10-7 (a) vtran(t) = C e−0.01 t V

Time constant 𝜏 = 100 s

(b) vss(t) = 10 V

(c) v(t) = 10 − 5 e−0.01 t V

(d) t = 391 s

P10-9 (a) Ttran(t) = C e−0.065 t ∘F
(b) Tss(t) = 65∘F
(c) T(t) = 65 + 75 e−0.065 t ∘F
(d) t = 24.8 min

(f) k = 0.161 min−1

P10-11 (a) vtran(t) = C e−0.4 t V, 𝜏 = 2.5 s

(b) vss(t) = 10 sin(0.01t) V

(c) v(t) = 10 sin(0.01t) V
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P10-13 (a) vtran(t) = C e−25 t V

(b) vss(t) = 40 V

P10-13 (c) v(t) = 40
(
1 − e−25 t

)
V

(d) 𝜏 = 0.04 s

v(0.04) = 25.31 V

v(0.08) = 34.6 V

v(0.16) = 39.3 V

v(∞) = 40 V

P10-15 (a) vtran(t) = C e−2 t m/s,
𝜏 = 0.5 s

(b) vss(t) = 4.905 m/s

(c) v(t) = 45.09 e−2 t + 4.905 m/s

(d) v(0) = 50, v(10s) = 4.905 m/s

(e) t = 3.08 s, t = 1.09 s

P10-17 (a) itran(t) = C e−2500 t A,
𝜏 = 0.1 ms

(b) iss(t) = 0 A

(c) i(t) = 0.05 e−2500 t A

(d) t = 1.84 ms

(e) T, T, T, F

P10-19 (a) vtran(t) = C e−400 t V

(b) vss(t) = 10 V

(c) v(t) = 10(1 − e−400 t) V

(e) 𝜏 = 0.0025 s

v(0.0025) = 6.32 V

v(0.005) = 8.65 V

v(0.010) = 9.82 V

v(∞) = 10 V

P10-21 (a) vtran(t) = C e−200 t V,
𝜏 = 5 ms

(b) vss(t) = 10 V

(c) v(t) = 10
(
1 − e−200 t

)
V

(d) v(0) = 0, v(5) = 6.32,
v(15) = 8.65, v(25) = 9.93 V

P10-23 (a) vo,tran(t) = k e−5 t V, 𝜏 = 0.2 s

(b) vo,ss(t) = −1 V

(c) vo(t) = −(1 − e−5 t) V

(e) vo,ss(t) = 0.995 sin(0.5 t
+174.3∘) V

P10-25 (a) 𝜃(t) = 𝜃o cos
(√

g
l

t
)

rad

Natural freq =

√
g
l

(b) T = 2𝜋

√
l
g

(c) l = 0.994 m

(d) F, F, F

P10-27 (a) ztran(t) = C3 sin(
√

b
m

t)+

C4 sin(
√

b
m

t) m

(b) zss(t) =
wo

b − m𝜔2
cos(𝜔 t)

(c) z(t) =
wo

b − m𝜔2

[
cos(𝜔 t)−

cos
(

k
m

t
) ]

m

(d) 𝜔n =
√

b
m

rad/s

(e) F, F, F

P10-29 (a) 𝜃tran(t) =
T
k

[
1−

cos
(√

k
I

t
)]

𝜔n =
√

k
I

rad/s

(c) increase, not affect, double,

0.707, not affect

P10-31 (a) ytran(t) = C3 cos
(√

3EI
mL3 t

)
+

C4 sin
(√

3EI
mL3 t

)
m

(b) yss =
mgL3

3EI
m

(c) y(t) = −
mgL3

3EI

[
1 − cos

(√
3EI
mL3

t

)]

+
√

2ghmL3

3EI
sin

(√
3EI
mL3

t

)
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(d) ymax =
2mgL3

3EI
is twice the static deflection

P10-33 (a) ytran(t) = C3 cos
(√

k
m

t
)

+C4 sin
(√

k
m

t
)

y1 and y2 have same
transient response

(b) y1,ss = 0, y2,ss(t) = mg∕k

(c) y2(t) =
mg
k

[
1 − cos

(√
k
m

t

)]
(d) y2,max = 2mg

k
, y2,min = 0

P10-35 (a) 𝜃tran(t) = C1 sin
(√

JG
IL

t
)

+C2 sin
(√

JG
IL

t
)

rad

(b) 𝜃ss =
Mo L

JG
rad

(c) 𝜃(t) =
MoL
JG

[
1 − cos

(√
JG
IL

t

)]
rad

(d) max twist is twice static twist

P10-37 (a) vo,tran(t) = C3 cos(100 t)+
C4 sin(100 t) V

𝜔n = 100 rad/s

(b) vo,ss(t) = −10.1sin(10 t) V

(d) vo(t) = 1.01(sin(100 t)−
10 sin(10 t)) V

P10-39 (a) ytran(t) = C3 cos
(√

k
m

t
)
+

C4 sin
(√

k
m

t
)

m

(b) yss(t) = (0.05∕k) t m

(c) y(t) = 0.01 cos
(√

k
m

t
)
−

0.05
k

√
m
k

sin

(√
k
m

t

)
+
√

0.05
k

t m

Chapter 11

P11-1 (a) 2.6%
(b) 3.6%
(c) 96.4%

P11-3 (a) 10.8%
(b) 89.2%

P11-5 (a) 50%
(b) 41.1%
(c) 12.5%
(d) 57.1%

P11-7 R = 99.9975%

P11-9 (a) 85.9%
(b) 14.1%

P11-11 𝛿 = 1.13 mm

Median = 1.1 mm

S𝛿 = 0.167 mm

P11-13 C = 0.8007 F

Median = 0.805 F

SC = 0.0613 F

P11-15 M = 6.55 M

Median = 6 M

Sm = 2.68 M

P11-17 P(Su > 515) = 8.8%

P11-19 P(W > 4.4) = 97.7%

P11-21 P(W < 6) = 99.6%

P11-23 P(C < 23) = 38.1%

P11-25 P(V < 10) = 5.99%

P11-27 P(1350 < W < 1650) = 73.7%

P11-29 P(16 < 𝜎 < 19) = 17.7%

P11-31 P(B < 750 or B > 1300) = 7.06%

P11-33 P(E < 200 or E > 250) = 13.1%

P11-35 P(d < 10 or d > 30) = 15.3%

P11-37 P(k < 246 or k > 253) = 61.8%

P11-39 P(𝜎 < 12 or 𝜎 > 19.2) = 33.3%
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Acceleration, 225, 230–244
due to gravity, 226

Addition of sinusoids of the same
frequency, 169–176, see also Sinusoids

Addition of two complex numbers, 139
Angular frequency, sinusoids, 164
Angular motion of the one-link planar

robot, 163–164
frequency and period, relations

between, 164
Antiderivative, 284
Armature current in a DC motor, 141
Asphalt problem, 282–287
Average, 412
Average velocity, 223

Bell curve, 414
Bending moment, 255

Capacitor, 319–327
current passing through, 252, 319
energy stored in, 319
impedance of, 137
voltage across, 252, 319

Center of gravity (centroid), 290
alternate definition of, 298
determination using horizontal

rectangles, 294
determination using vertical rectangles, 296
first moment of area, 299
of triangular section, 292

Chain rule of derivative, 245
Complementary solution, 356
Complex conjugate, 148
Complex numbers, 134

addition of two complex numbers, 139
armature of a DC motor, 141
division of complex numbers in polar

form, 141
examples of, 143
exponential form, 143
impedance of a series RLC circuit, 137
impedance of R, L, and C as a, 136
multiplication of a complex number in polar

form, 140
polar form, 138

position of a one-link robot as a, 135
subtraction of two, 138

Continuously random variable, 414
Cos(𝜃), 62
Cramer’s Rule, 192
Current, 245

flowing in an inductor, 328
flowing through a capacitor, 319

Definite integral, 284
Deflection, 255
Derivatives, 223

applications in dynamics, 230
applications in electric circuits, 245
applications in strength of materials, 255,

see also material strength
chain rule of, 246
definition of, 223
examples of, 265
maxima and minima, 226

Differential equations, 354
first-order differential equations, 357
leaking bucket, 354
linear DEQ, solution with constant

coefficients, 356
second-order DEQ, 383

Direct kinematics of a two link robot, 74
Distributed loads, 255, 300

hydrostatic pressure on a wall, 301
on beams, statically equivalent, 302

Distribution, 414
Division of complex numbers in polar

form, 141
Dynamics, 230

derivatives applications in, 230
integrals applications in, 307

Elbow-up solution for 𝜃1, 78
Electric circuits

current and voltage in a capacitor, 319
derivatives applications in, 245
integrals applications in, 319

Energy stored in a capacitor, 319
Equivalent resistance, 36
Euler’s formula, 135
Exponential form, 135

I-1



Trim Size: 8in x 10in Rattan2e bindex.tex V1 - 03/17/2021 3:23pm Page 2�

� �

�

I-2 INDEX

Factoring, 31
First-order DEQ, 357
Force displacement relationship, 6
Free-body diagram (FBD), 118, 120

Graphical method solution, 189

Homogeneous solution, 358
Hydrostatic pressure, 301

Impedance, 137
of a capacitor, 137
of a resistor, 136, 139
of an inductor, 136, 139
of RLC circuit, 137

Indefinite integrals, 285
Inductor

as a circuit element, 245
current and voltage in, 245
impedance of, 136

Integral, 282, see also Distributed Loads
asphalt problem, 282
concept of work, 287, see also work
current and voltage in, 328
definite, 284
examples, 333
in dynamics, 307
in electric circuits, 319
in statics, 290, see also Statics
indefinite, 285
inverse operations, 285

Kirchhoff’s voltage law (KVL), 3, 188

Linear DEQ solution, 356
steady-state solution, 357
transient solution, 356

Linear frequency, sinusoids, 168
Low-pass filter, 381

Material strength, 255
bending moment, 255
deflection, 255
distributed load, 255
max and min value, 261
maximum stress under axial loading, 261
moment, 260
shear force, 260
slope, 259

Matrix algebra method
tension in cables, 190
two loop circuit, 188

Maxima, 273
Maximum stress under axial loading, 261

inclined section, 261
Mean, 412, 413
Median, 412, 413

Method of undetermined coefficients, 357
Minima, 273
Moment, 255, 303
Multiplication of complex numbers in polar

form, 140

Newton’s First Law, 118
Newton’s Second Law, 384
Normal distribution, 414
Normal distribution curve, 414

Ohm’s Law, 3, 188
One link planar robot

angular motion of, 163
as a sinusoid, 160

Particular solution, 357
Period, 163
Phase angle, 165
Phase shift, 165
Polar form

complex numbers, 138
position vector as, 124

Position, 230
of a one link robot as a complex number, 135

Position vector
in polar and rectangular form, 108

Power, 245
Probability, 409–411, 414
Probability distribution, 414

Quadratic equations, 31
current in a lamp, 35
equivalent resistance, 36
examples of, 38
pipeline through parabolic hill, 48
projectile in a vertical plane, 31
resistors in parallel, 36

Quadratic formula, 34
Quality control, 409

Rectangular form, 108
Reference angle, 66
Relative velocity, 115
Repeated roots, 356
Resistive circuit, voltage-current, 3
Resistor

impedance of, 136
in parallel, 36

Resonance, 391

Sample mean, 414
Second order DEQ, 383

forced vibration, 387
free vibration, 383
LC circuit, 394

Shear force, 255, 259
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INDEX I-3

Sin(𝜃), 62
Sinusoids, 160

amplitude, 163
one link planar robot, 163
phase angle, 165
phase shift, 165
time shift, 165

Slope, 227
Slope intercept form, 6
Speed at impact, 224
Spring mass system

forced vibration, 387
free vibration, 383

Standard deviation, 413, 414
Standardized normal PDF, 416
Static equilibrium, 118, 120
Statically equivalent loading, 300
Statics

application of integrals, 290
center of gravity, 290

Statistics, 409
Steady state solution, 356
Straight lines, 1

examples, 7
force displacement, 6
slope-intercept form, 1
vehicle during braking, 1
voltage current, 3

Substitution method, 189, 194
tension in cables, 193
two loop circuit, 188

Subtraction of two complex numbers, 139
System of equations

examples, 196

Tension in cables, 193
Cramer’s Rule, 196
matrix algebra method, 195
substitution, 194

Time constant, 360
Time shift, 165, 166
Tolerance, 412
Transient solution, 362
Triangular section

centroid of, 292
Trigonometry, 61

one link planar robot, 61
reference angle, 66
two link planar robot, 73

Two dimensional vectors, 107
free body diagram, 130
relative velocity, 115
static equilibrium, 118
vector addition, 128

Two loop circuit, 188

Vector addition
examples of, 112

Velocity, 223, 225
Voltage, 245

in capacitor, 319
in inductor, 328
resistive circuit, 3

Work, 287
under a constant force, 288
under a variable force, 288

Z-table, 416
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Useful Mathematical
Relations

Algebra and Geometry
Arithmetic Operations

a(b + c) = ab + ac

a
b
+ c

d
= ad + bc

bd
a + c

b
= a

b
+ c

b

a
b
c
d

= a
b
× d

c

= ad
bc

Exponents and Radicals

xm xn = xm+n

xm

xn
= xm−n

(xm)n = = xm n

x−n = 1
xn

(x y)n = xn yn

(
x
y

)n

= xn

yn

x1∕n = n
√

x

xm∕n = n
√

xm

=
(

n
√

x
)m

n
√

x y = n
√

x n
√

y

n

√
x
y
=

n
√

x
n
√

y

Factoring Special Polynomials

x2 − y2 = (x + y) (x − y)

x3 + y3 = (x + y) (x2 − xy + y2)

x3 − y3 = (x − y) (x2 + xy + y2)
Quadratic Formula

If a x2 + b x + c = 0. then

x = −b ±
√

b2 − 4 a c
2 a

Lines

Equation of line with slope m and
y-intercept b:

y = mx + b

Slope of line through points P1(x1, y1) and
P2(x2, y2):

m =
y2 − y1

x2 − x1

Point-slope equation of line through point
P1(x1, y1) with slope m:

y − y1 = m (x − x1)

Point-slope equation of line through point
P2(x2, y2) with slope m:

y − y2 = m (x − x2)

Distance Formula

Distance between points P1(x1, y1) and
P2(x2, y2):

d =
√

(x2 − x1)2 + (y2 − y1)2

Area of a Triangle:

A = 1
2

b h

= 1
2

a b sin(𝜃) b

h
a

θ

Equation, Area and Circumference of Circle:

Equation:

(x − k)2 + (y − k)2 = r2

A = 𝜋 r2

C = 2𝜋 r

y

(h, k)

x

r



Trim Size: 8in x 10in Rattan2e both.tex V1 - 02/13/2021 3:28pm Page 2�

� �

�

Trigonometry
Angle Measurement

𝜋 radians = 180∘

1∘ = 𝜋

180
rad

1 rad = 180
𝜋

deg

s = r 𝜃

r
s

r

θ

Right-Angle Trigonometry

sin 𝜃 =
opp
hyp

cos 𝜃 =
adj
hyp

tan 𝜃 =
opp
adj

hyp
opp

adj
θ

Trigonometric Functions

sin 𝜃 =
y
r

cos 𝜃 = x
r

tan 𝜃 =
y
x

r =
√

x2 + y2

𝜃 = atan2(y, x)

yr

x

y

x
θ

P(x, y)

Fundamental Identities

csc 𝜃 = 1
sin 𝜃

sec 𝜃 = 1
cos 𝜃

tan 𝜃 = sin 𝜃

cos 𝜃

cot 𝜃 = 1
tan 𝜃

sin2𝜃 + cos2𝜃 = 1

1 + tan2𝜃 = sec2𝜃

1 + cot2𝜃 = csc2𝜃

sin(−𝜃) = − sin(𝜃)

sin
(
𝜃 − 𝜋

2

)
= − cos(𝜃)

cos(−𝜃) = cos(𝜃)

cos
(
𝜃 − 𝜋

2

)
= sin(𝜃)

tan(−𝜃) = − tan(𝜃)

tan
(
𝜃 − 𝜋

2

)
= − cot(𝜃)

Double-Angle Formulas

sin (2 𝜃) = 2 sin( 𝜃) cos( 𝜃)
cos (2 𝜃) = cos2(𝜃) − sin2(𝜃)
= 2cos2(𝜃) − 1 = 1 − 2 sin2(𝜃)

Half-Angle Formulas

sin
(
𝜃

2

)
= ±

√
(1 − cos 𝜃)

2

cos
(
𝜃

2

)
= ±

√
(1 + cos 𝜃)

2

Addition and Subtraction Formulas

sin(𝜃1 ± 𝜃2) = sin 𝜃1 cos 𝜃2 ± cos 𝜃1 sin 𝜃2

cos(𝜃1 ± 𝜃2) = cos 𝜃1 cos 𝜃2 ∓ sin 𝜃1 sin 𝜃2

Law of Sines

sin A
a

= sin B
b

= sin C
c

C

a

b

c

A

B

Law of Cosines

a2 = b2 + c2 − 2 b c cos A
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Differentiation Rules

d
dt
(c) = 0

d
dt
[c f (t)] = c ḟ (t)

d
dt
(c1 f (t) + c2 g(t)) = c1 ḟ (t) + c2 ġ(t)

d
dt
(c1 f (t) − c2 g(t)) = c1 ḟ (t) − c2 ġ(t)

d
dt
(tn) = n tn−1

Product Rule

d
dt
[f (t) g(t)] = f (t) ġ(t) + ḟ (t) g(t)

Quotient Rule

d
dt

[
f (t)
g(t)

]
=

g(t) ḟ (t) − f (t) ġ(t)
[g(t)]2

Chain Rule

d
dt

f (g(t)) =
df
dg

×
dg
dt

Power Rule

d
dt
(tn) = n tn−1

Exponential Functions

d
dt
(ea t) = a ea t

Trigonometric Functions

d
dt
[sin (a t)] = a cos (a t)

d
dt
[cos (a t)] = − a sin (a t)

Integration Rules

∫ y dx = y x − ∫ x dy

∫ xn dx = xn+1

n + 1
+ C, n ≠ −1

∫ ea x dx = ea x

a
+ C

∫ sin(a x)dx = −cos(a x)
a

+ C

∫ cos(a x)dx = sin(a x)
a

+ C

∫ c f (x)dx = c ∫ f (x)dx

∫ [c1f (x) + c2g(x)]dx
= c1 ∫ f (x)dx + c2 ∫ g(x)dx
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Commonly Used
Units in Engineering

Unit English SI Conversion Factor
Length in. or ft m 1 in. = 0.0833 ft = 0.0254 m
Area in.2 or ft2 m2 1 in.2 = 0.00694 ft2 = 0.000645 m2

Volume in.3 or ft3 m3 1 in.3 = 0.000579 ft3 = 1.64E-5 m3

Velocity in./s or ft/s m/s 1 in./s = 0.0833 ft/s = 0.0254 m/s
Acceleration in./s2 or ft/s2 m/s2 1 in./s2 = 0.0833 ft/s2 = 0.0254 m/s2

Force lb N 1 lb = 4.45 N
Pressure (Stress) lb/in.2 (psi) N/m2 (Pa) 1 psi = 6890 Pa

Mass lbm kg 1 lbm = 0.454 kg
Energy in.-lb or ft-lb N-m (J) 1 in.-lb = 0.0833 ft-lb = 0.113 J
Power in.-lb/s or ft-lb/s W (J/s) 1 in.-lb/s = 0.0833 ft-lb/s = 0.113 W

Voltage Volts (V) Volts (V)
Current Amps (A) Amps (A)

Resistance Ohms (Ω) Ohms (Ω)
Inductance Henrys (H) Henrys (H)
Capacitance Farads (F) Farads (F)

Commonly Used Prefixes in Engineering
Nano (n) 10−9

Micro (𝜇) 10−6

Milli (m) 10−3

Centi (c) 10−2

Kilo (k) 103

Mega (M) 106

Giga (G) 109
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